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Finite element analysis of cable shields to 

investigate the behavior of the transfer 

impedance with respect to fast transients 
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Cable shields 

 

 

Transfer impedance 
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Definition of transfer impedance: [1]  

• Defined as: Ratio between the transferred voltage per unit length on the internal 

surface of the shield and the longitudinal current on the external side of the shield  
 

• Measured in Ohms per meter: 
 

  

     

  

 
 

 

• The electromagnetic interference current (EMI current)  is applied to the inner circuit 

formed by the inner conductor and the shield.  

• This EMI current produces a differential transfer voltage  on the outer side of the 

shield 
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where x is the longitudinal space coordinate 

Used Setup: 

S.A. Schelkunoff, “The Electromagnetic Theory of Coaxial Transmission Lines and Cylindrical Shields”,  

The Bell System Technical Journal, Volume 13, Issue 4, Oct. 1934  



Characterization of cable shields 

Transfer impedance 
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Characterization of transfer impedance of 

braided shields via terms of 
 

• Inner radius of the shield 

• Shield thickness 

• Conductivity of the shield 

• Weave angle of the shield 

• Coverage factor 
 

• Number of carriers  

• Number of filaments 

• Filament diameter 
 



Cable model  

Coaxial cable: RG58/CU, basic geometry  
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Geometry: 
• Diameter of inner conductor: 0.90mm 

• Inner diameter of shield:        2.90mm 

• Outer diameter of shield:       3.50mm 

 
 Shield thickness of 0.30mm 

 

 

Materials: 
• Conductors: Copper, 56MS/m 

• Dielectric: Polyethylene,  2 4r .



FEM- Model 

Cable model 
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Model parameters  
 

• Inner radius of the shield 

• Shield thickness 

• Conductivity of the shield 

• Weave angle of the shield 

• Coverage factor 

 

 

• Number of carriers  

• Number of filaments 

• Filament diameter 

 

ELEctromagnetic Field ANalysis Tool 3D 



Skin effect and discretization issues 

Cable model 
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Exponential decrease of current density from its value at the surface  SJ :
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Where     is the skin depth: 

… resistivity of the conductor 

… angular frequency 

… permeability  0 r   

10f kHz 100f kHz 100f MHz

652 m   206 m   6 52. m  



• For the numerical analysis, the A,V-A - formulation is used [2] 

• A magnetic vector potential A and an electric scalar potential V  

    represented by a modified scalar potential v are introduced 

• The magnetic vector potential A is used in the non-conducting region       and in 

the conducting region  

• The scalar potential v is used in the conducting region  
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Simulation 

O.Bíró, K. Preis, “On the use of the magnetic vector potential in the finite-element analysis of three-dimensional 

eddy currents”, IEEE Transactions on Magnetics, Vol. 25, No. 4, July 1989  



9 
   

0 1 0 2   0   E x Ev andon v v on   

2
0

v

E
d I

t t

  
    

  


A
n

aA a B b [ ]{ } [ ]{ } { }

1

1 1
[ ]{ [ ]{[A]{ } } } }{k k k k

k k

a B a B a b
t t

 
 



For an eddy current problem with current excitation, the boundary conditions are 

1 2,   ...E E 

voltage between these two 

electrodes 

 ...xv

With a given current    the following 

relationship has to be satisfied 

additionally:  

0I

Applying Galerkin techniques leads to a 

system of first order differential 

equations 

This is solved by time-stepping applying 

the backward Euler scheme [3] resulting 

in a system of algebraic equations 

surfaces of the electrodes  

Simulation (2) 

B.Weiss, O.Bíró, ”On the Convergence of Transient Eddy-Current Problems”,  

IEEE Transactions on Magnetics,Vol. 40, No. 2, March 2004 



Test results at 100kHz 

Results 
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Line diagram of current density 

evaluated over the cable diameter 



Broadband investigation 

Results 
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Solid shield, copper shield with aperture and 

braided shield  

As input function  

a gaussian pulse is applied 
Transfer impedance vs frequency 

Baseband spectrum of i(t) in dB 



Results 
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S r dSet Voltage: U Rise-time: t Pulse Width: t

1000 V                         5±1.5 ns    

                  

          50±( ) ( 15)ns

applied current vs normalized induced voltage 

 0
t tkV e es(t) V    

Transient simulation 

As input function the standardized EFT/BURST pulse was applied via a 50     resistance  
(IEC 61000-4-4:2012) 

The testing signal is modelled as a  

double exponential pulse [4]: 



M. Magdowski, R. Vick, “Estimation of the Mathematical Parameters of Double-Exponential Pulses Using the 

Nelder-Mead Algorithm”, IEEE Transactions on Electromagnetic Compatibility, pp1060-1062, Nov. 2010 
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Signal integrity and crosstalk 

Outlook 

Cable deformities such as pinched cables 

and their influence on signal integrity and crosstalk 

 

• Impedance mismatch, since the characteristic 

impedance is geometry dependent 

 

• Apertures in the shield create an additional 

path for the electromagnetic coupling between 

the inside and the outside of the shield 

• Refining the geometry 

• Parameterized model for sensitivity analysis 

• Extraction of manageable model for further simulation (SPICE) 
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Thank you for your attention 

 
Susanne.bauer@tugraz.at 
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