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Intro: design process and needs

 Robust designs require assessment against 

uncertainty

 Optimize design to achieve better product performance

2

 Need for a computational model, i.e. a procedure (e.g., analytical 

formula, algorithm, …)  computing quantities of interest from input 

parameters
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The crux of the 
matter

• Computational models 
are demanding in terms of 
memory and CPU time

• Statistical simulations 
are necessary for both 

• the assessment of the 
design robustness 
w.r.t. uncertainty and 
variability

• the performance 
optimization 
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Surrogate Modeling
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 A surrogate model ℳ� is an approximation of the full-computational 

model ℳ
��  �  ��	
�

Input parameters 	


Training Pairs

�	�, ���
	

�
Fitting/

Regression

�� ���

�� ��…
Parameters

…

Model Prediction

Surrogate 
model
ℳ� ���

 Determined from a limited number of runs of the full model

 Simpler closed-form relationship

 Faster then the full-model ℳ

Several fitting techniques are available 
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Least Squares Support Vector Machines 

(LS-SVM)

5

 Machine learning technique for both classification and regression

 Kernel method mapping data from the vector space to the feature space

 The # of unknowns is independent from problem dimensionality (non-parametric 

regression)

Generic formulation

ℳ � �  ��! �� , � " #
$

�%�

The response � � ℳ$&'&() ��� is 

given as the linear combination 

of the kernel evaluated at the 

training samples �� .
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The coefficients + and # are estimated by solving a simple linear system

0 1 … 1
1 K�x�, x�� " 1

0 K�x�, x1�
⋮ ⋱
1 K�x1, x�� K�x1, x1� " 1

0

#
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+$

�
0
��⋮
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LS-SVM  (cont’d)

ℳ$&'&() � �  +�! �� , � " #
$

�%�

Least squares solution

How accurate is the model prediction ???
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• Build a surrogate mode via 

a deterministic regression 

�� � �$&'&() ��
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Deterministic Regression & Error Function 
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• Training samples 8 ��, �� , … , ��7, �7�9
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• Build a surrogate mode via 

a deterministic regression 
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• Model Prediction
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Deterministic Regression & Error Function 

8

• Training samples 8 ��, �� , … , ��7, �7�9

the regression error 4��� is only known on the training samples ��

How accurate is the prediction? 

Confidence bounds are needed!!!
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We can think of the error function ?�	� in a probabilistic sense 

Random error (White Noise)

In practice, error is a smooth function
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Probabilistic Interpretation

Assumption: 

4��� is smooth → The values >����, . . , >��@� are correlated
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��
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We can think of the error function ?�	� in a probabilistic sense 

x
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Probabilistic Interpretation

We can think of the error function ?�	� in a probabilistic sense 

Assumption: 

4��� is smooth → The values >����, . . , >��@� are correlated

Prior: before using the training samples

��
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Gaussian Process (GP) Regression: 

from Prior to Posterior
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 The value of the error 4���� is known on the training samples ?�	��
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GP Regression: from Prior to Posterior
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 The value of the error 4���� is known on the training samples ?�	��
 Discarding all the functions not compatible with the training samples

We consider only all functions fitting our data 

Such functions can be described in terms of a probability law → 

probabilistic model

0 1 2 3 4 5 6 7

x

-4

-2

0

2

4

e
(x

)

0 1 2 3 4 5 6 7

x

-4

-2

0

2

4

e
(x

)

0 1 2 3 4 5 6 7

x

-4

-2

0

2

4

e
(x

)

Prior training samples Posterior

Statistical Analysis of the Efficiency of an Integrated Voltage Regulator by means of a Machine Learning Model Coupled with Kriging Regression  – SPI 2019, 18-21 June, 2019

0 1 2 3 4 5 6 7

x

-1

0

1

2

3

4

5

y
(x

)

�∗

N��∗�
C��∗�

GP Regression & Probabilistic Model

14

The model provides for any value 

�∗ a distribution [3]

� x∗ ∼ P�N��∗�, C5��∗��
most probable 

value of the error

confidence 

bounds

 The resulting model combines the deterministic regression �$&'&() with a 

probabilistic model of the error function 4 �

GP allows converting any 

regression-based 

deterministic model into a 

probabilistic one�∗∗

N��∗∗�

C��∗∗�

[3] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning, MIT Press. Cambridge, Massachusetts, 2006. 
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Integrated Voltage Regulator (IVR)
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 System-in-package (SiP) solution with 

buck converter, low-dropout/load and an 

integrated inductor on an organic 

package [4]

The converter efficiency depends 

on the integrated inductor

 The buck converter is used to drop the 

voltages of the power plane 1 to the 

level required by the power plane 2

[4] H. M. Torun, et al., “A Global Bayesian Optimization Algorithm and Its Application to Integrated System Design,” in IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol. 26, no. 4, pp. 792–802, April 2018. 
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Embedded Solenoidal Inductor [5]
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Top View Lateral View

[5] R. Trinchero, at al., “Machine Learning and Uncertainty Quantification for Surrogate Models of Integrated Devices With a Large Number of 

Parameters,” in IEEE Access, vol. 7, pp. 4056-4066, 2019. 

The IVR efficiency has 

been investigated by 

considering 8 

uniformly distributed 

parameters
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IVR Results

17

 A subset of Q � 200 training samples is selected via Latin Hypercube Sampling

 The surrogate model predictions are compared with the results of a MC simulation

with 10000 samples

LS-SVM and LS-SVM+GP regression with RBF kernel provides the 

most accurate metamodel
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IVR Results (cont’d)
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Excellent agreement for both the model prediction and Confidence Intervals

 The prediction and 95% confidence intervals estimated by the GP+LS-SVM (RBF) are 

compared with the results of a MC simulation with 10000 samples.
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Conclusions
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 FUTURE WORK: What is the limit in term of number of parameters?

 Surrogates based on Machine Learning regressions represent effective 

solution for the UQ in nonlinear problems

 Surrogates are built from a limited set of training samples provided by the 

full-model

 Gaussian Process regression (aka Kriging) allows building accurate 

probabilistic models providing an estimation of the model output + confidence 

bounds


