Frequency-Dependent Target Impedance Method Fulfilling Both Average and Dynamic Voltage Drop Constraints

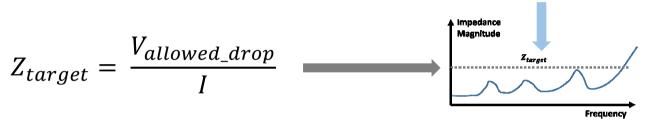
Jun Chen, Masanori Hashimoto

Department of Information Systems Engineering Osaka University, Japan

Agenda

Background of Target Impedance

Challenges for target impedance Contribution of this work


Frequency-Dependent Target Impedance

Target impedance deriving flow Magnitude equivalent frequency (MEF) Synthesize target impedance

- Experiment Results
- Conclusion

Background of target impedance

PDN uses target impedance to ensure maximum allowed voltage drop^[1]

Power

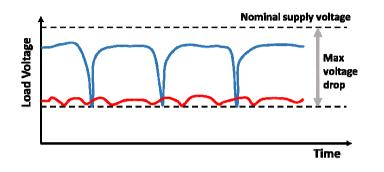
Delivery

Network

(PDN)

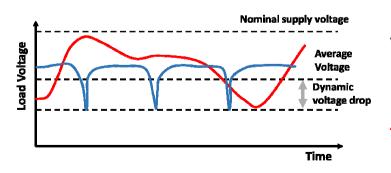
VDC

Flat Z_{target} is increasingly difficult to meet


Cause under- or over-designed PDN.

Frequency-dependent $Z_{target}(f)$ is an open problem.

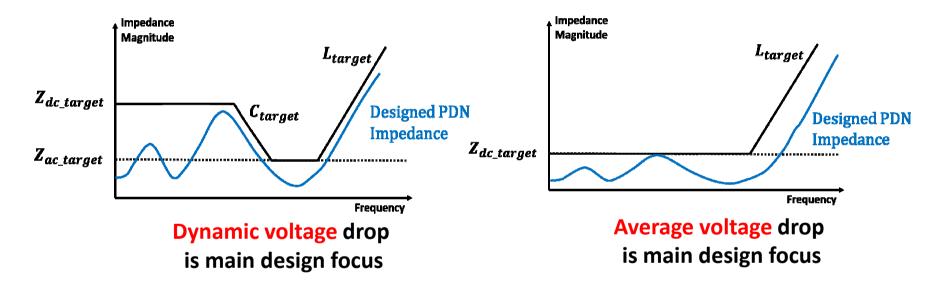
Requirement and challenge


Consider average and dynamic voltage drop constraints. Associate frequency-domain Z_{target} and time-domain I, V.

Average and dynamic voltage drop constraints are NOT well considered in previous work.

Given one voltage drop constraint,
PDN can be **over- or under-designed.**blue needs more focus on dynamic drop.
red needs more focus on average drop.

Deriving Z_{target} (f) using <u>current spectrum</u> and <u>voltage spectrum</u>^[2] has limitation.



Converting voltage drop constraints to voltage spectrum has many variations. (blue and red with same constraints) $Z_{target}(f)$ is not unique

Contribution of this work

1. Fulfills both average and dynamic voltage drop constraints.

Two Z_{target} types for different constraints focus.

2. Associates time-domain I, V with frequency-domain Z_{target} .

By idea of Magnitude Equivalent Frequency (**MEF**). Verified result by synthesized Z_{target} circuit.

Agenda

Background of Target Impedance
 Main challenges for target impedance
 Contribution of this work

Frequency-Dependent Target Impedance
 Target impedance deriving flow
 Magnitude equivalent frequency (MEF)
 Synthesize target impedance

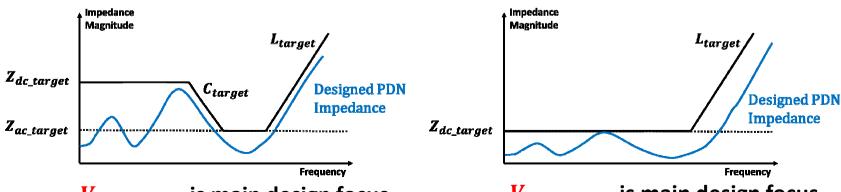
- Experiment Results
- Conclusion

Target impedance deriving flow

Inputs:

Load current profile *I(t)*

Voltage drop constraints V_{avg_allow} and V_{dyn_allow}


Frequency-dependent Z_{target} is composed of:

 $Z_{ac\ target}$: target impedance at middle-high frequency

 Z_{dc_target} : target impedance at low frequency

 C_{target} : target capacitance, min required capacitance

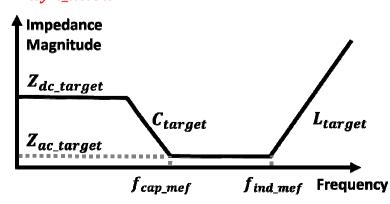
 L_{target} : target inductance, max allowed inductance

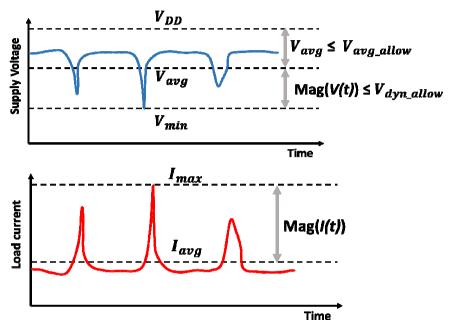
 V_{dyn_allow} is main design focus

V_{avg_allow} is main design focus

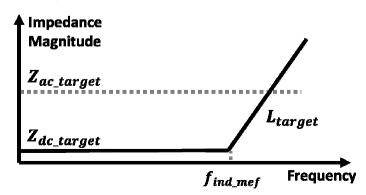
Derive Z_{ac_target} and Z_{dc_target}

Consider $V_{avg\ allow}$ constraints:


$$Z_{dc_target} = V_{avg_allow} / I_{avg}$$


Consider V_{dyn_allow} constraints:

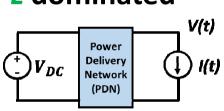
$$Z_{ac_target} = V_{dyn_allow} / Mag(I(t))$$

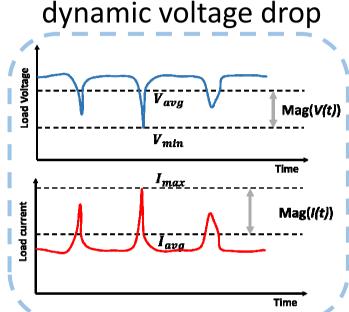

Result in piecewise Z_{target} shapes:

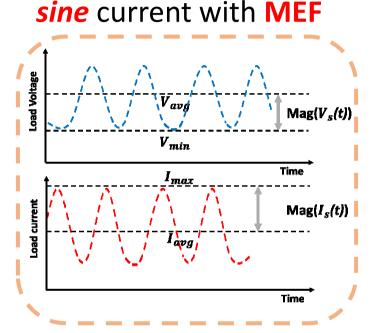
 $Z_{ac_target} < Z_{dc_target}$ $V_{dvn\ allow}$ drop is design focus

 $Z_{ac_target} \ge Z_{dc_target}$ V_{avg_allow} drop is design focus

Magnitude equivalent frequency (MEF) I


can be represented by


If impedance is


C dominated

or

L dominated

L dominant impedance example:

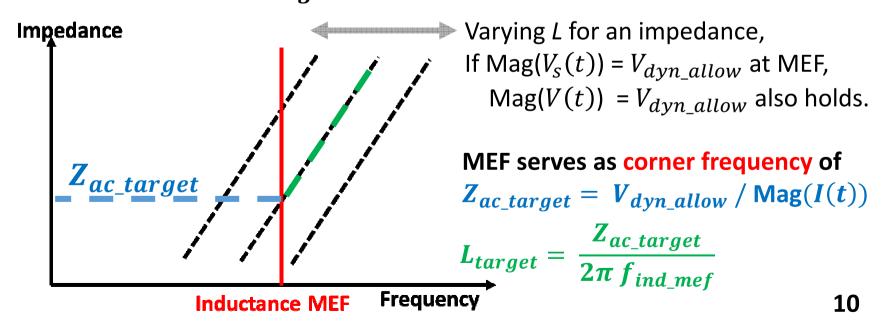
Let
$$I_s(t) = \text{Mag}(I(t)) \sin(2\pi f_{MEF}t)$$
,

$$Mag(I_s(t)) = Mag(I(t))$$

$$\mathsf{Mag}(V_s(t)) = \mathsf{Mag}(L\frac{dI_s}{dt}) = L2\pi f_{MEF} \mathsf{Mag}(I(t))$$

$$\mathsf{Mag}(V(t)) = \mathsf{Mag}(L \frac{dI}{dt}) = \mathsf{Mag}(\frac{dI}{dt})$$

^{*}Similar with **C** dominant impedance.


Magnitude equivalent frequency (MEF) II

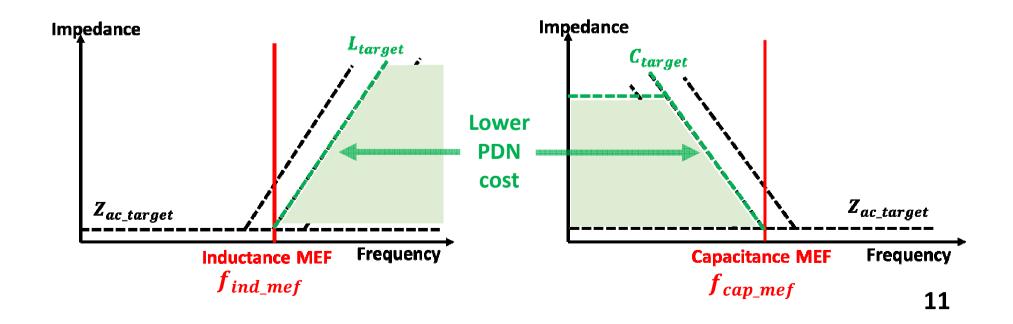
With different *L* or *C*, MEF sine current can still replay the dynamic voltage drop. (equations still hold with <u>same</u> MEF)

$$Mag(I_s(t)) = Mag(I(t))$$

 $Mag(V_s(t)) = Mag(V(t))$

Since *L* and *C* are common coefficient and can be canceled out in equations.

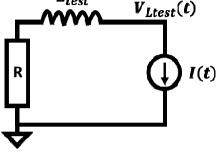
Use MEF to find L_{target} (max allowed inductance):



Magnitude equivalent frequency (MEF) III

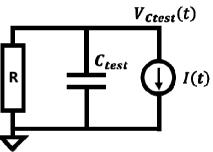
 Z_{target} design method is simplified because:

Original current profile (with complex spectrum and profile)
Replaced by MEF sine profile (with <u>one</u> spectrum component).


Use MEF to find L_{target} (Max allowed inductance). C_{target} (Min required capacitance).

Calculate MEF, L_{target} , and C_{target}

Characterization Circuit Setup:


R, L_{test} , C_{test} are known-value parameters. Form L and C dominant impedance.

For inductance MEF

Characterization Flow:

Inject I(t) run simulation for $V_{Ltest}(t)$ and $V_{Ctest}(t)$. Measure Mag(I(t)), $Mag(V_{Ltest}(t))$, and $Mag(V_{Ctest}(t))$.

For capacitance MEF

Inductance MEF is obtained by:

$$f_{ind_mef} = \frac{\text{Mag}(V_{Ltest}(t))}{\text{Mag}(I(t))} \frac{1}{2\pi L_{test}}$$
 $L_{target} = \frac{Z_{ac_target}}{2\pi f_{ind_mef}}$

Capacitance MEF is obtained by:

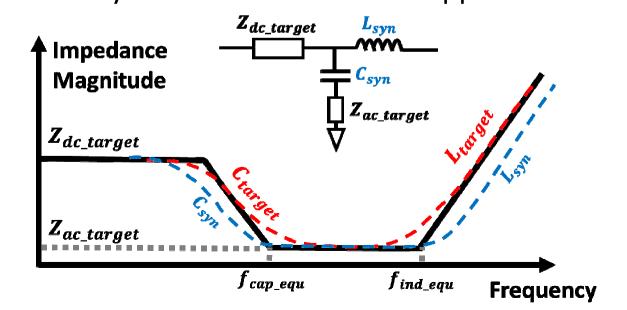
$$f_{cap_mef} = \frac{\text{Mag}(I(t))}{\text{Mag}(V_{Ctest}(t))} \frac{1}{2\pi C_{test}}$$

Target inductance:

$$L_{target} = \frac{Z_{ac_target}}{2\pi f_{ind_mef}}$$

Target capacitance:

$$f_{cap_mef} = \frac{\text{Mag}(I(t))}{\text{Mag}(V_{Ctest}(t))} \frac{1}{2\pi C_{test}} \qquad C_{target} = \frac{1}{2\pi f_{cap_mef} Z_{ac_target}}$$


Synthesize Z_{target} circuit

T-shape RLC circuit to track Z_{target} .

Direct using Z_{dc_target} , Z_{ac_target} , C_{target} , L_{target} Can violate the voltage drop constraints. (Actual impedance is larger at corner frequency)

In the experiment:

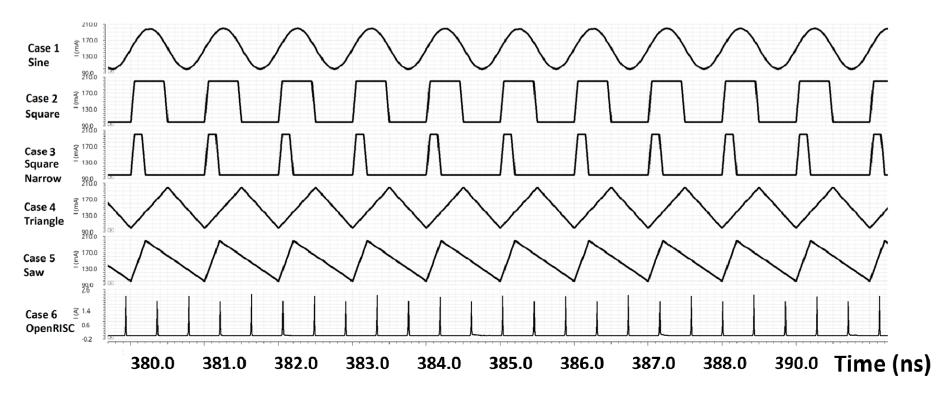
Use larger capacitance and smaller inductance. Other synthesis method can be applied also.

Agenda

- Target Impedance Background
 Main challenges for target impedance
 Contribution of this work
- Frequency-Dependent Target Impedance
 Magnitude equivalent frequency (MEF)
 Derive and synthesize target impedance
- Experiment Results
- Conclusion

Experiment setup

Nominal voltage is 800 mV.


Case 1: reference 1.0 GHz sine profile.

Case 2 and 3: square current profile to mimic module activations.

Case 4 and 5: triangle current profile to mimic typical digital circuit load.

The constraints are V_{avg_allow} =70 mV and V_{dyn_allow} =10 mV.

Case 6: current profile from OpenRISC operation (15nm Open Cell Lib, 1.2 GHz) The constraints are V_{avg_allow} =10 mV and V_{dyn_allow} =30 mV.

Experiment results

Measured V_{avg} and V_{min} correlates well with constraints. Average difference rates are 0.0003% and 0.3%

The derived target impedance associates with current profile. Wider pulse results in larger C_target Sharper slope result in smaller L_target

Case 1 Sine	2100 170.0 130.0 210.0		\bigwedge	\bigwedge	\bigwedge
Case 2 Square	170.0 130.0 210.0		$\Box \Box$		
Case 3 Square Narrow	170.0 E 130.0 210.0		_/_	_/_	
Case 4 Triangle	170.0 130.0 210.0		\checkmark	\checkmark	\checkmark
Case 5 Saw	₹ 170.0 E 130.0	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$
Case 6 OpenRIS	<u>≤</u> 1.4 C 0.6				
•		380.0	381.0	382.0	383.0

	Z _{dc_target}	Z_{ac_target}	Ctarget	L _{target}	V_{avg}	V_{min}
	$(m\Omega)$	$(m\Omega)$	(nF)	(pH)	(mV)	(mV)
Case 1	466.6	200.0	0.8	31.8	730.0	722.5
Case 2	482.7	181.8	1.2	5.0	730.0	722.2
Case 3	608.7	117.6	0.7	5.0	729.9	720.9
Case 4	466.6	200.0	0.6	24.7	730.0	722.5
Case 5	466.6	200.0	0.5	19.8	730.0	722.5
Avg. Diff.	-	-	-	-	0.0003%	0.3%
Case 6	251.9	12.5	0.35	0.01	790.2	760.6
Diff.	-	-	-	-	0.02%	0.07%

Conclusion

- A new frequency-dependent target impedance method.
- Consider both average and dynamic voltage drop constraints.
- Associate time domain and frequency domain info with MEF.
- Synthesized target impedance correlates well with constraints.

Q&A