

23rd IEEE WORKSHOP ON SIGNAL AND POWER INTEGRITY

A BAYESIAN APPROACH TO ADAPTIVE FREQUENCY SAMPLING

Simon De Ridder — simon.deridder@ugent.be

1 ΜΟΤΙVΑΤΟΝ

2 LINEAR BAYESIAN VECTOR FITTING

3 EXAMPLE

HAIRPIN FILTER

4 SUMMARY

MOTIVATON

THE NEED FOR ADAPTIVE FREQUENCY SAMPLING

- Characterization of devices through simulations is essential to design
- Simulation at every frequency often too **expensive**
- Need a broadband characterization with few simulations

SEQUENTIAL STRATEGY

Classic approach: sweep over frequency range

Adaptive frequency sampling (AFS): Sequentially simulate at one frequency at a time.

SEQUENTIAL STRATEGY

Classic approach: sweep over frequency range

Adaptive frequency sampling (AFS): Sequentially simulate at one frequency at a time.

SEQUENTIAL STRATEGY

Classic approach: sweep over frequency range

Adaptive frequency sampling (AFS): Sequentially simulate at one frequency at a time.

SEQUENTIAL STRATEGY

Classic approach: sweep over frequency range

Adaptive frequency sampling (AFS): Sequentially simulate at one frequency at a time.

SEQUENTIAL STRATEGY

Classic approach: sweep over frequency range

Adaptive frequency sampling (AFS): Sequentially simulate at one frequency at a time.

SEQUENTIAL STRATEGY

Classic approach: sweep over frequency range

Adaptive frequency sampling (AFS): Sequentially simulate at one frequency at a time.

SEQUENTIAL STRATEGY

Classic approach: sweep over frequency range

Adaptive frequency sampling (AFS): Sequentially simulate at one frequency at a time.

Goal of VF: modeling transfer function (e.g. S-parameters) Approximate the **transfer function** with a **rational pole/residue model**

$$\overline{F}(s) pprox \sum_{k=1}^{\kappa} rac{\overline{R_k}}{s-a_k} + \overline{D} + s\overline{E}$$

 \rightarrow Nonlinear problem due to a_k .

Rewrite as

$$\overline{\textit{F}}(\textit{s}) = rac{\overline{\textit{p}}(\textit{s})}{\sigma(\textit{s})} = rac{\sum_{k=1}^{\textit{K}}rac{\overline{\textit{r}_k}}{\textit{s}-\textit{q}_k} + \overline{\textit{d}} + \textit{s}\overline{\textit{e}}}{\sum_{k=1}^{\textit{K}}rac{\widehat{\textit{r}_k}}{\textit{s}-\textit{q}_k} + \widehat{\textit{d}}}$$

Solve $\sigma(s)\overline{F}(s) = \overline{p}(s)$ for \widehat{r}_k and \widehat{d} .

linear regression

Zeros of $\sigma(s) =$ poles of $\overline{F}(s)$.

(nonlinear) eigenvalue problem

 \rightarrow relocated poles a_k

Identify $\overline{R_k}$, \overline{D} and \overline{E} .

linear regression

Sampling denominator residues

Calculating relocated poles

Sampling residues

LBVF models

AFS WITH LINEAR BAYESIAN VECTOR FITTING

AFS WITH LINEAR BAYESIAN VECTOR FITTING

- samples from LBVF models of different orders
- weighted standard deviation using marginal likelihood as weights
- Gaussian penalties at already evaluated points

HAIRPIN FILTER

HAIRPIN FILTER 4 INITIAL POINTS

HAIRPIN FILTER 4 INITIAL POINTS

HAIRPIN FILTER 4 INITIAL POINTS

18/30

HAIRPIN FILTER 5 POINTS

HAIRPIN FILTER 5 POINTS

HAIRPIN FILTER 6 POINTS

HAIRPIN FILTER 7 POINTS

HAIRPIN FILTER 8 POINTS

HAIRPIN FILTER 9 POINTS

HAIRPIN FILTER 10 POINTS

HAIRPIN FILTER

HAIRPIN FILTER 12 POINTS

HAIRPIN FILTER BEST MEAN FIT AT EACH STEP

HAIRPIN FILTER

FINAL MEAN FIT

 S_{11}

LBVF is a next-generation stochastic modeling framework based on Vector Fitting.

It provides a useful measure of model uncertainty.

Key advantages:

- provides model uncertainty in a principled and statistically sound manner
- can handle noisy (non-deterministic) data

23rd IEEE WORKSHOP ON SIGNAL AND POWER INTEGRITY

A BAYESIAN APPROACH TO ADAPTIVE FREQUENCY SAMPLING

Simon De Ridder — simon.deridder@ugent.be

HAIRPIN FILTER

UNCERTAINTY QUANTIFICATION WITH GAUSSIAN NOISE

HAIRPIN FILTER

UNCERTAINTY QUANTIFICATION WITH GAUSSIAN NOISE

