SPI 2019

23rd IEEE Workshop on Signal and Power Integrity 18-21 June - Chambery 2019 (France)

Propagation Channel in Silicon in the Sub-THz Band for MPSoC

Ihsan EL MASRI, Student Member, IEEE, Thierry LE GOUGUEC, Member, IEEE, Pierre-Marie MARTIN, Member, IEEE, Rozenn ALLANIC, Member, IEEE, Cedric QUENDO, Senior Member, IEEE

UNIVERSITE

Lab[,]STICC

• Introduction

• Propagation channel in V band

Propagation channel in the Sub-THz band

• Conclusion

Conclusion

Introduction

UNIVERSIT

The classical metal interconnects constraints:

Propagation

channel in V band

- a) High latency.
- b) High power consumption.
- c) Routing complexities.
- Proposed alternatives :
 - 1. 3D interconnections.
 - 2. Optical interconnections.
 - 3. Carbone Nano-Tubes (CNT).
 - 4. RF interconnections .
 - 5. Wireless interconnections.

Classical metal interconnects (Intel)

Optical interconnections (IBM)

Iniversité de Bretagne Occidentale

Lab-STICC

- WiNoC applications => CMOS technology
 => Silicon substrate
- Problems due to the Silicon substrate:

1.
$$ε_{r-Si} = 11,9$$
 & LR-Si*: $ρ = 10$ Ω.cm =>

low antenna efficiency

2.
$$\varepsilon_{r-Si}$$
 = 11,9 >> ε_{air} = 1 => reflections

on PMC** walls and a resonant cavity.

A radiation pattern for a typical integrated antenna on Silicon [1]

Lab

* LR-Si: Low resistivity Silicon; ** PMC : Perfect Magnetic Conductor

[1] H. M. Cheema and A. Shamim, "The last barrier: on-chip antennas," *IEEE Microwave Magazine*, vol. 14, no. 1, pp. 79–91, Jan. 2013.

BRETAGN

Université de Bretagne Occidentale

CominLabs

- EM simulation (HFSS) and realization **structure**:
 - High-Resistivity Silicon (HR-Si) ($\varepsilon_{Si} = 11, 9, H_{sub} = 655 \, \mu m$)
 - A layer of 330 nm height of SiO_2 ($\varepsilon_{SiO2} = 4$).

- First prototype in **V band (40-75 GHz)**.
 - Realization @ GREMAN Laboratory -Tours.
 - Measurement with GSG probes @ Lab-STICC BREST

- Characterization through the S parameters:
 - Reflection: S_{11} or S_{22} : $BW_{-10 dB}(Hz) \rightarrow Matching bandwidth$
 - Transmission: S_{21} or S_{12} : $BW_{-3 dB}(Hz) \rightarrow Transmission bandwidth$

- Reflection coefficient (S_{11}) : Simulated vs. Measured:
 - Multiple resonances.
 - Cause: cavity effects and multiple substrate modes.

- Solution to the cavity problem and the reflection on the air / Si interface :
 - -> Absorbing layer surrounding the Si

Lab-STICC

- Reflection coefficient (S₁₁): Measured vs. Simulated :
 - Multiple resonances -> Single resonance over a large matching BW.

- Transmission coefficient (S₂₁): Simulated :
 - Multiple transmission zeroes ->

Stable transmission over a large -3 dB BW .

Sub-THz band (30-300 GHz) =>

- 1. High bandwidths : **10% = 20 GHz @ 200 GHz**
- 2. Reduced size of the antennas:

 $\lambda \approx 435 \mu m$ @ 200 GHz on Si -> Vertical monopoles embedded in the substrate -> Multicast + Broadcast

Surrounding absorbing layer => No cavity problem

16

 Two metallic planes (top and bottom)=> HR Si as a 2D guiding media + No EMC problem

- Reflection coefficient (S_{11}): Simulated :
 - Single resonance.
 - Large matching BW : 70 GHz (≈ 35 %)

• A realist Many-Core scenario:

- a) Squared mesh with 16 monopoles
- b) 1 Antenna per cluster
- c) 8 cores per cluster => 128 cores

(Used by: Intel, NVIDIA, Tilera ...)

Lab<mark>-</mark>STICC

UNIVERSITE

BRETAGN

LOIRE

Université de Bretagne Occidentale

CominLabs

Electric field distribution of the antenna #7

@200 GHz

- 1. Convenient for Broadcast /Multicast
- 2. Dependence on the **antennas placement and the distance**

of separation

Effect of the antennas placement and the distance on the signal intensity

Best Case scenario : highest levels and largest -3dB-BW between the closest antennas (ex. 1 & 2 or equivalent) with a distance of separation of 5 mm.

Worst-case scenario: between the farthest antennas i.e. on the diagonals (1 & 16 or 4 & 13) with a distance of separation of 21.2 mm.

Université de Bretagne Occidentale

Lab

UNIVERSITE BRETAGNE

LOTRE

CominLabs

- Data rate comparable to the state of the art of the WiNoC
- Coding can be optimized in both cases

Case	-3dB BW1 (GHz)	-3dB BW2 (GHz)	Possible data rate (Gbps) For both BW *	Possible data rate (Gbps) For BW1 only **
Best Case Scenario	23,5	20	> 32	> 16
Worst Case Scenario	12	10	> 16	> 8

* By a frequency multiplexing, possible benefit of both bandwidths

** Using only the largest bandwidth

- 1. The advantages of the WiNoC antennas in the EHF band: high bandwidth with a minimal size.
- 2. The cavity problems : Multiple resonances and transmission zeros.
- **3. Proposed solutions:**
 - A. Addition of an **absorption layer**
 - B. Two metallic planes to avoid EMC influences
 - C. HR-Si as a propagation medium
 - D. Additional improvement through the vertical **monopole antennas.**

omin abs

UNIVERSITE

- 1. Proof of concept: Measurement of the realized **absorbing** layer circuits in **Q** and **V** band.
- 2. Task Mapping at the coding/routing levels based on the attenuation maps.
- 3. Combination of **RF models and digital techniques** and evaluation of the **complete proposed WiNoC solution**.

Questions

Thank you for your attention

Work performed on the High Performance Computing Cluster(HPC) at Lab-STICC:

https://www.univ-brest.fr/plateformes-technologiques/menu/nos-plates-formes/TECHYP

