

Optical sensing for the vectorial analysis of ultra-wideband electric field requirements, performances and applications

Gwenaël GABORIT

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 👘 🔍 🗁 👘 🔍 😋 1/43

Electro-optic technique

Applications 00000000000 000000000 Conclusions Kapters

Involved entities

Université Savoie-Mont-Blanc

IMEP-LAHC

- 3 locations (Chambéry, Le Bourget-du-Lac, Annecy)
- 19 laboratories
- 14 000 students

IMEP-LAHC Laboratory

- 2 locations (Grenoble, Le Bourget-du-Lac)
- Activities in 3 thematics (CMNE, RFM, PHOTO)
- 57 (13) researchers
- 17 (1) ingeneers & technicians
- 69 (4) PhD students and post-doc

Kapteos S.A.S.

- Created in 2009
- Market segments :
 - \rightarrow Scientific
 - \rightarrow Healthcare
 - \rightarrow Energy
- manpower: 10 workers

Electro-optic technique

plications 000000000 0000000 Conclusions Kapteds

Involved entities

Université Savoie-Mont-Blanc

IMEP-LAHC

- 3 locations (Chambéry, Le Bourget-du-Lac, Annecy)
- 19 laboratories
- 14 000 students

IMEP-LAHC Laboratory

- 2 locations (Grenoble, Le Bourget-du-Lac)
- Activities in 3 thematics (CMNE, RFM, PHOTO)
- 57 (13) researchers
- 17 (1) ingeneers & technicians
- 69 (4) PhD students and post-doc

Kapteos S.A.S.

- Created in 2009
- Market segments :
 - \rightarrow Scientific
 - \rightarrow Healthcare
 - \rightarrow Energy
- manpower: 10 workers

Electro-optic technique

Applications 00000000000 000000000

Conclusions

ns kaptess

Involved entities

Université Savoie-Mont-Blanc

IMEP-LAHC

- 3 locations (Chambéry, Le Bourget-du-Lac, Annecy)
- 19 laboratories
- 14 000 students

IMEP-LAHC Laboratory

- 2 locations (Grenoble, Le Bourget-du-Lac)
- Activities in 3 thematics (CMNE, RFM, PHOTO)
- 57 (13) researchers
- 17 (1) ingeneers & technicians
- 69 (4) PhD students and post-doc

Kapteos S.A.S.

- Created in 2009
- Market segments :
 - \rightarrow Scientific
 - \rightarrow Healthcare
 - \rightarrow Energy
- manpower: 10 workers

 Introduction 0 0	Electro-optic technique	Applications 00000000000 000000000	Conclusions 00 00	kaptess
łc				

nac

3/43

KAPTEOS S.A.S

Gwenaël GABORIT - Optical sensing for the vectorial analysis of ultra-wideband electric field

→ Solutions provider and manufacturer of measurement instruments for research & industry in **harsh environment**

KAPTEOS S.A.S

 \rightarrow Solutions provider and manufacturer of measurement instruments for research & industry in **harsh environment**

- \rightarrow Some of our references:
 - Private compagnies:

• Public institutes:

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 👘 🔍 🔍 👋 🖓 🔇 3/43

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 👘 🔍 📮 🗠 🗘 ९ 🖓 – 4/43

- Introduction
- 2 Electro-optic technique
 - Principle
 - EO probe description and performances
- 3 Applications
- 4 Conclusions
 - Summary
 - Outlooks and challenges

1 Introduction

2 Electro-optic technique

3 Applications

4 Conclusions

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 👘 👎 💷 🖗 🛇 🛇 — 7/43

E-field

E-field

Need of tools for the comprehensive characterization of the E-field

Need of tools for the comprehensive characterization of the E-field

Need of tools for the comprehensive characterization of the $\ensuremath{\mathsf{E}}\xspace$ -field

► Measurement of the E-field UWB, non-invasive, vectorial and offering appropriate spatial and time resolution

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 👘 🔍 🗁 👘 🔍 🔅 7/43

Existing technologies

Bolometer

Existing technologies

Bolometer

Franz-Keldysh

on Electro-optic technique 00000 Existing technologies Applications

Conclusions Kapters

Existing technologies

IMEP-LAHC

IR thermography

Bolometer

Franz-Keldysh

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field — 🔍 🗆 🗧 🖉 ९ 🖓 – 8/43

Electro-optic technique Existing technologies

kaptess Conclusions

Existing technologies

IMEP-LAHC

IR thermography

Bolometer

Franz-Keldysh

on Electro-optic technique 00000 Existing technologies Applications

Conclusions Kapteds

Existing technologies

IMEP-LAHC

IR thermography

Bolometer

Franz-Keldysh

►EO sensors competitive exept concerning sensitivity

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 🛛 🔍 🗖 🖓 🖓 🔭 8/43

- Introduction
- 2 Electro-optic technique
 - Principle
 - EO probe description and performances

3 Applications

4 Conclusions

The electro-optic (EO) effect

Electro-optic technique

0000

Principle

IMEP-LAHC

kaptess

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field - ベロト・ミミックへで 10/43

 $\delta n = \vec{K}.\vec{E}$

The electro-optic (EO) effect Pockels effect : Linear variation of the refractive index induced by the electric-field

with \vec{K} the sensitivity **vector**^{*} depending on :

- the EO crystal
- ${\ensuremath{\bullet}}$ the orientation of the optical wavevector/crystal

^{*} Duvillaret *et al.*, JOSA B, 2002.

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 💦 4 💷 🕨 9 9 9 9 11/43

* Duvillaret et al., JOSA B, 2002.

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 💦 4 💷 🕨 9 9 9 9 11/43

EO effect - crystals

Crystals and index ellipsoïd:

$$\vec{E} = \vec{0} \Rightarrow x^2(\frac{1}{n_x^2}) + y^2(\frac{1}{n_y^2}) + z^2(\frac{1}{n_z^2}) = 1$$

- The indices n_i are dependent on T
- $n_x = n_y = n_z = n_0$ for an isotropic

EO effect - crystals

Crystals and index ellipsoïd:

$$\vec{E} \neq \vec{0} \quad \Rightarrow \quad x^2(\frac{1}{n_x^2} + \delta_1) + y^2(\frac{1}{n_y^2} + \delta_2) + z^2(\frac{1}{n_z^2} + \delta_3) + yz\delta_4 + xz\delta_5 + xy\delta_6 = 1$$

The variations δ_i are function of *E*(E_x, E_y, E_z)
δ_i = ≤ 10⁻¹⁰E_j

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 💦 4 💷 🗠 9 9 9 9 12/43

Anisotropic EO crystal \rightarrow measurement of E_x and T lsotropic EO crystal \rightarrow measurement of E_x and E_y

 $\langle \Box \rangle \langle \Xi \rangle \cdot \mathcal{O} \langle \mathcal{O} \rangle$ Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field

13/43

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 🔰 🔍 🔍 🔿 🛇 — 14/43

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 👘 🔍 💷 🕨 🔍 🖓 🖓 📜 14/43

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 👘 🔍 🔍 🖓 🖓 🖓 📜 14/43

- Crystal size can be chosen depending on the application
- 2 probe sheaths: measurement in air or water-based liquids
- Transverse or longitudinal probe

- Crystal size can be chosen depending on the application
- 2 probe sheaths: measurement in air or water-based liquids
- Transverse or longitudinal probe

➡ Pigtailed probe (∩ 100 m)
 ➡ Adaptative coating

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 👘 🔍 💷 🗠 🔍 🖓 🖓 🕚 15/43

Linearity

Response of the probe versus $|\vec{E}| \rightarrow$ depends on the EO coefficients, on the permittivity and on optoelectronic treatment

EO probe performances (1)

Linearity

Response of the probe versus $|\vec{E}| \rightarrow$ depends on the EO coefficients, on the permittivity and on optoelectronic treatment

Vectorial selectivity

EO probe performances (1)

Linearity

Response of the probe versus $|\vec{E}| \rightarrow$ depends on the EO coefficients, on the permittivity and on optoelectronic treatment

Vectorial selectivity

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 💦 4 💷 🗄 4 😇 🔊 9 ९ ७ – 16/43

EO probe performances (2)

Bandwidth of the EO system

Frequency response depends on :

- Temporal response of the EO effect
- Frequency cut-off of the optoelectronic unit
- Photon lifetime within the crystal

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 🔰 🔍 🖓 🖓 🖓 17/43

Spectral response > 8 decades of frequency

Gwenaël GABORIT - Optical sensing for the vectorial analysis of ultra-wideband electric field

ロ ト 《 三 ト の 久 (や 17/43

Introduction

- 2 Electro-optic technique
- 3 Applications

4 Conclusions

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field - ビート・モートの 9. ペー 18/43

G. Gaborit et al., UWB-SP 10 Book, Chapter 6, Springer, 2013.

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 👘 🔍 🔍 🖓 🖓 🖓 19/43

G. Gaborit et al., UWB-SP 10 Book, Chapter 6, Springer, 2013.

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 👘 🔍 💷 🕨 ९ ९ 🕐 — 19/43

G. Gaborit et al., UWB-SP 10 Book, Chapter 6, Springer, 2013.

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 👘 🧐 🔍 🔍

19/43

Vectorial mapping in the near field region: \rightarrow Pattern in the vicinity of the antenna aperture (frequency domain-900 MHz) – **fundamental mode**

Vectorial mapping in the near field region: \rightarrow Pattern in the vicinity of the antenna aperture (frequency domain-900 MHz) – **fundamental mode**

Vectorial mapping in the near field region: \rightarrow Pattern in the vicinity of the antenna aperture (frequency domain-900 MHz) – cross polarization

Vectorial mapping in the near field region: \rightarrow Pattern in the vicinity of the antenna aperture (frequency domain-900 MHz) – **longitudinal field**

No need of a "big" anechoic chamber
 Comprehensive reconstruction of the E-field vector

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 🔰 🔍 🔍 🖓 🖓 🖓 20/43

• Biological media: $\varepsilon_r = 77$

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 💦 4 💷 🕨 4 😇 🕨 9 ۹ 😷 – 21/43

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 💦 4 💷 🕨 9 9 9 - 21/43

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 👘 🔍 💷 🕨 ९ ९ 🕐 – 21/43

Specific Absorbtion Rate Determination of the SAR: 3D mapping inside a phantom head:

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 👘 🔍 💷 🗠 🔍 🖓 🖓 🗠 22/43

Specific Absorbtion Rate Determination of the SAR: 3D mapping inside a phantom head:

E-field within the phantom ($\varepsilon_r = 44.2 + i19.1$)

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 💦 4 💷 🕨 4 😇 🗠 9 4 🖓 - 22/43

Specific Absorbtion Rate Determination of the SAR: 3D mapping inside a phantom head:

E-field within the phantom ($\varepsilon_r = 44.2 + i19.1$)

➡ Max. measured SAR_{max} = 360 W/kg
 ➡ Mesurement theshold as weak as 10 µW/kg

Gwenaël GABORIT - Optical sensing for the vectorial analysis of ultra-wideband electric field

<□ ▶ < 壹 ▶ の Q (ひ 22/43

- \rightarrow Very complex EM environment
- EM field:
 - DC B-field (3 T, 4.5 T and more),
 - Pulsed RF B & E fields (127 MHz, 200 MHz and more)
- Biological media under test:
 - $\mu_r pprox 1
 ightarrow$ no artefact on B gradient
 - heterogeneous in shape
 - heterogeneous in dielectric constant $\varepsilon_r = 20 \curvearrowright 60$ and $\sigma = 0.1 \curvearrowright 1$ S/m

- \rightarrow Very complex EM environment
- EM field:
 - DC B-field (3 T, 4.5 T and more),
 - Pulsed RF B & E fields (127 MHz, 200 MHz and more)
- Biological media under test:
 - ullet $\mu_{r}pprox 1
 ightarrow$ no artefact on B gradient
 - heterogeneous in shape
 - heterogeneous in dielectric constant $\varepsilon_r = 20 \curvearrowright 60$ and $\sigma = 0.1 \curvearrowright 1$ S/m

- \rightarrow Very complex EM environment
- EM field:
 - DC B-field (3 T, 4.5 T and more),
 - Pulsed RF B & E fields (127 MHz, 200 MHz and more)
- Biological media under test:
 - $\mu_r pprox 1
 ightarrow$ no artefact on B gradient
 - heterogeneous in shape
 - heterogeneous in dielectric constant $\varepsilon_r = 20 \curvearrowright 60$ and $\sigma = 0.1 \curvearrowright 1 \text{ S/m}$

- \rightarrow Very complex EM environment
- EM field:
 - DC B-field (3 T, 4.5 T and more),
 - Pulsed RF B & E fields (127 MHz, 200 MHz and more)
- Biological media under test:
 - $\mu_r pprox 1
 ightarrow$ no artefact on B gradient
 - heterogeneous in shape
 - heterogeneous in dielectric constant $\varepsilon_r = 20 \curvearrowright 60$ and $\sigma = 0.1 \curvearrowright 1 \text{ S/m}$

Measurement of the E-field to analyse the radiation pattern of the birdcage & the exposure of the biological media (SAR)

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 💦 4 💷 🕅 4 😇 🔊 9 ۹ ९ 🗨 23/43

Creatis

\rightarrow Mapping of the rms field in a pre-clinical 4.7 T MRI*

Creatis IPM

\rightarrow Mapping of the rms field in a pre-clinical 4.7 T MRI*

Creatis

\rightarrow Mapping of the rms field in a pre-clinical 4.7 T MRI*

► Very good agreement between measurements and simulations

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 🤍 🤍 ロンチィーマン 24/43

Electro-optic technique

Applications

MR image using a patch antenna with optical decoupling: \rightarrow local modification of static B field \rightarrow Strong image distortion induced by an ultra small non antimagnetic component!

-MRI

MEP-LAHC

Antimagnetic photodiode

Creatis

Conclusions kaptess

MR image using a patch antenna with optical decoupling: \rightarrow local modification of RF E field

-MRI

MEP-LAHC

 \rightarrow Strong modification of the local SAR

MR images and SAR

Electro-optic technique

Creatis

Antimagnetic photodiode

MR image using a patch antenna with optical decoupling: \rightarrow local modification of RF E field \rightarrow Strong modification of the local SAR

-MRI

MEP-LAHC

MR images and SAR

Electro-optic technique

Applications

Devices, components, connections, and cables have to be qualified for a use in MRI system

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 👘 🔍 💷 🗠 4 😇 🕨 🔊 ۹. 🔍 - 26/43

Creatis

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 👘 🔍 🔍 🔍 27/43

In vivo analysis Clinincal MRI 127 MHz (pelvis ant., gradient echo seq.)

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 👘 🔍 💷 🕨 🔍 🖓 🗠 27/43

Image modified only due to the insertion of the probe (no distorsion of the field)

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 💦 4 💷 🕨 4 😇 🕨 9 ۹ 😷 – 27/43

Lab MRI 200 MHZ (birdcage ant.)

Clinincal MRI 127 MHz (wrist ant.)

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 👘 🔍 🔍 🔍 28/43

Lab MRI 200 MHZ (birdcage ant.)

Clinincal MRI 127 MHz (wrist ant.)

In-situ & real time monitoring of the SAR
 The exposure depends dramatically on the complex permittivity
 AND on the shape of the imaged media

UNIVERSITÄTS KLINIKUM TÜBINGEN

Hyperthermia in MRI

 \rightarrow Applying RF field (Sine 115 MHz) to localy increase the temperature and hense, improving the efficiency of chemotherapy

Spiral antenna (Ø15 cm)

- Placed outside the body to heat tumor inside the body (44 ° C)
- Feeding source CW: 100 W, 115 MHz

4D mapping of the *in-situ* rms E-field deduced from E_i, φ_i

Intense electric field

Single shot measurement of E_x and E_y within a discharge:

G. Gaborit et al., IEEE Plasm. Sci., 2014.

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 💦 🔍 ロトック 🧟 - 30/43

Intense electric field

Single shot measurement of E_x and E_y within a discharge:

G. Gaborit et al., IEEE Plasm. Sci., 2014.

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 👘 🔍 💷 🕨 🔍 🖓 🖓 👋 30/43

Intense electric field

Single shot measurement of E_x and E_y within a discharge:

E-Field up to more than 3 MV/m Alternate characterization impossible

G. Gaborit et al., IEEE Plasm. Sci., 2014.

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 👘 🔍 💷 🕨 🔍 🖓 🖓 👋 30/43

Disturbance on the potential difference inducing the discharge (measured with a home-made resistive divider):

G. Gaborit et al., IEEE Plasm. Sci., 2014.

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 👘 🔍 🔍 🖓 🖓 🖓 🔧 31/43

Disturbance on the potential difference inducing the discharge (measured with a home-made resistive divider):

Very weak induced perturbation on the field
 No disturbance on the field applicator

G. Gaborit et al., IEEE Plasm. Sci., 2014.

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 👘 🔍 💷 🕨 🔍 🖓 🖓 😁 31/43

- 4th state of matter
- constitute more than 99.9 % of the universe (both in volume and mass)
- used in a lot of applications: surface treatment of liquid/solid, medicine, agriculture, combustion, propulsion, nanofrabrication

Plasmas

- $4^{\rm th}$ state of matter
- constitute more than 99.9 % of the universe (both in volume and mass)
- used in a lot of applications: surface treatment of liquid/solid, medicine, agriculture, combustion, propulsion, nanofrabrication ...

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field

Plasma analysis Dielectric Barrier Discharges (DBD):

- Voltage source: 50 Hz, [0-25] kV, 1 mA
- Implemention fully suitable for:
 - DBD (in the [15-25] kV range)
 - E-field measurement with the EO probe

Non-linearity between voltage and field
Phase shift of 90° induced by the charged species

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 💦 4 💷 🕨 9 9 9 9 34/43

Introdu	ICTION
muou	uction

IMEP-LAHC

-Plama

Electro-optic technique

Applications

Plasma analysis

Ar plasmajet and target: The Ar Plasma jet is fed by a voltage signal at 1 MHz, *i.e* the **single shot vectorial field pattern** is obtained in 1 μ s

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field

In	++	0			~	÷i	0	n	
	u,	U	u	u	c	u	U		
		_	_	_	-		-		

MEP-LAHC

-Plama

Electro-optic technique

Applications 0000000000

200

264

Plasma analysis

Ar plasmajet and target: The Ar Plasma jet is fed by a voltage signal at 1 MHz, *i.e* the single shot vectorial field pattern is obtained in 1 μ s

Gwenaël GABORIT - Optical sensing for the vectorial analysis of ultra-wideband electric field

High Voltage and energy \rightarrow 25kV composite insulator: Radial E field mapping at 50 Hz (meas. in time domain, dynamic range > 50 dB)

High Voltage and energy \rightarrow 25kV composite insulator: Radial E field mapping at 50 Hz (meas. in time domain, dynamic range > 50 dB)

z (mm)

(meas. in time domain, dynamic range > 50 dB)

E-field analysis instead of visual/electrical inspection
 Other similar cases: pollution, salt fog, icing, bird poop, ...

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 💦 4 💷 🗠 9 ९ ९ – 36/43

High Voltage and energy EM perturbations on train busbar: Pantograph lowering \rightarrow Electric arcs

High Voltage and energy EM perturbations on train busbar: Pantograph lowering \rightarrow Electric arcs

Few hundreds discharges (only a few tens were expected)
 Increasing E-field vs time
 Early ageing of pentographs and transformers

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 💦 4 💷 🕨 4 😇 🕨 9 ۹ 😷 – 37/43

Reaching TeraHertz Frequencies

Working in the equivalent time domain (repetitive pulses only-no jittered signal): emitter/receiver=cubic crystal (ZnTe <111>)

IMEP-LAHC

Electro-optic technique

Applications 00000000

Conclusions kapte s

Reaching TeraHertz Frequencies

Linear polarization state of the THz beam generated with a linearly polarized laser beam

-THz

Elliptical polarization state of the THz beam generated with a circularly polarized laser beam

Introduction

IMEP-LAHC

Electro-optic technique

Applications

Conclusi

· Kaptess

Reaching TeraHertz Frequencies

Linear polarization state of the THz beam generated with a **linearly polarized** laser beam

-THz

Elliptical polarization state of the THz beam generated with a $\ensuremath{\textit{circularly polarized}}$ laser beam

Measurement of ps pulses
 vectorial measurement up to 10 THz

- Introduction
- 2 Electro-optic technique
- 3 Applications
- 4 Conclusions
 - Summary
 - Outlooks and challenges

- ✔ Fully dielectric sensor
- Millimeter sized
- ✓ Spatial resolution better than 1 mm³
- \checkmark Minimum detectable field lower than 100 mV.m^{-1}.Hz^{-1/2}
- ✔ Achievable dynamics of more than 120 dB
- ✓ Frequency bandwidth up to 100 GHz in real time (40 GHz for commercial product)
- ✔ Vectorial selectivity better than 50 dB
- ✔ Optical remote up to 100 meters

- ✔ Fully dielectric sensor
- ✔ Millimeter sized
- ✓ Spatial resolution better than 1 mm³
- \checkmark Minimum detectable field lower than 100 mV.m^{-1}.Hz^{-1/2}
- ✔ Achievable dynamics of more than 120 dB
- ✓ Frequency bandwidth up to 100 GHz in real time (40 GHz for commercial product)
- ✔ Vectorial selectivity better than 50 dB
- ✔ Optical remote up to 100 meters

- ✔ Fully dielectric sensor
- Millimeter sized
- \checkmark Spatial resolution better than 1 mm³
- \checkmark Minimum detectable field lower than 100 mV.m^{-1}.Hz^{-1/2}
- ✔ Achievable dynamics of more than 120 dB
- ✓ Frequency bandwidth up to 100 GHz in real time (40 GHz for commercial product)
- ✔ Vectorial selectivity better than 50 dB
- ✔ Optical remote up to 100 meters

- ✔ Fully dielectric sensor
- Millimeter sized
- \checkmark Spatial resolution better than 1 mm³
- \checkmark Minimum detectable field lower than 100 mV.m^{-1}.Hz^{-1/2}
- ✔ Achievable dynamics of more than 120 dB
- ✓ Frequency bandwidth up to 100 GHz in real time (40 GHz for commercial product)
- ✔ Vectorial selectivity better than 50 dB
- ✔ Optical remote up to 100 meters

- ✔ Fully dielectric sensor
- Millimeter sized
- \checkmark Spatial resolution better than 1 mm³
- \checkmark Minimum detectable field lower than 100 mV.m^{-1}.Hz^{-1/2}
- \checkmark Achievable dynamics of more than 120 dB
- ✓ Frequency bandwidth up to 100 GHz in real time (40 GHz for commercial product)
- ✔ Vectorial selectivity better than 50 dB
- ✔ Optical remote up to 100 meters

- ✔ Fully dielectric sensor
- Millimeter sized
- \checkmark Spatial resolution better than 1 mm³
- \checkmark Minimum detectable field lower than 100 mV.m^{-1}.Hz^{-1/2}
- \checkmark Achievable dynamics of more than 120 dB
- ✓ Frequency bandwidth up to 100 GHz in real time (40 GHz for commercial product)
- ✔ Vectorial selectivity better than 50 dB
- ✔ Optical remote up to 100 meters

- ✔ Fully dielectric sensor
- Millimeter sized
- \checkmark Spatial resolution better than 1 mm³
- \checkmark Minimum detectable field lower than 100 mV.m^{-1}.Hz^{-1/2}
- \checkmark Achievable dynamics of more than 120 dB
- ✓ Frequency bandwidth up to 100 GHz in real time (40 GHz for commercial product)
- ✓ Vectorial selectivity better than 50 dB
- ✔ Optical remote up to 100 meters

- ✔ Fully dielectric sensor
- Millimeter sized
- \checkmark Spatial resolution better than 1 mm³
- ✓ Minimum detectable field lower than 100 mV.m⁻¹.Hz^{-1/2}
- ✔ Achievable dynamics of more than 120 dB
- ✓ Frequency bandwidth up to 100 GHz in real time (40 GHz for commercial product)
- ✓ Vectorial selectivity better than 50 dB
- ✔ Optical remote up to 100 meters

- Antenna
- MRI
- Plasma
- Energy
- SAR
- ✔ EMC

- Antenna
 MRI
 Plasma
 Energy
 SAR
- ✔ EMC

- Antenna
- MRI
- Plasma
- EnergySAR
- ✔ EMC

Applications of the field measurement with EO probe:

AntennaMRIPlasmaEnergy

✓ SAR ✓ EMC

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 🔰 🔍 🗘 🖓 🖓 – 41/43

- Antenna
- MRI
- Plasma
- Energy
- SAR
- ✔ EMC

Applications of the field measurement with EO probe:

- Antenna
- MRI
- Plasma
- Energy
- SAR
- ✔ EMC

Outlooks and challenges

- New generation of mobile telecommunications : 5G
- Aerospace (characterization of Tx antenna)
- Interaction between pulsed laser and plasmas

Outlooks and challenges

- New generation of mobile telecommunications : 5G
- Aerospace (characterization of Tx antenna)
- Interaction between pulsed laser and plasmas

Outlooks and challenges

- New generation of mobile telecommunications : 5G
- Aerospace (characterization of Tx antenna)
- Interaction between pulsed laser and plasmas

Questions/Discussion???

Gwenaël GABORIT — Optical sensing for the vectorial analysis of ultra-wideband electric field 👘 🔍 💷 🕨 🔍 🖓 🖓 👋 43/43