

UNIVERSITÉ

ONT BLANC

SAVOIE

G. Houzet, P. Artillan, C. Bermond, <u>T. Lacrevaz</u> and B. Flechet

Université Savoie Mont Blanc, IMEP-LAHC, UMR CNRS 5130 73376 Le Bourget du Lac – France

23RD IEEE WORKSHOP ON SIGNAL AND POWER INTEGRITY

Context and Motivation

HF characterizations of Devices in integrated circuits (IC) necessary

- Feed back for designers

- Validation of circuits and materials performance
- Predictive studies from feed back

Context and Motivation

illustration of HF characterization of a Device Under Test (DUT)

Vector Network Analyzer (VNA)

Context and Motivation

illustration of HF characterization of a Device Under Test (DUT)

Structure to analyse

IMEP-LAHC

Characteristic Impedance Z_C of coplanar lines required for establishing an equivalent electrical (R, L, G, C) of model the DUT

- Structure to analyze => Transmission Line with short accesses (<< λ)
- S param Measurements under LRRM calibration => Ref Impedance 50 Ohms
- LRL De-embedding improved procedure to determine Z_C and γ
- Procedure based on a combination of previous works (Williams and Pantoja Ref [3] and [4] of the paper)

Methodology of Z_c and γ extraction

2 - Calculation of $[T_{TL}]$ and $[T_{L_{access}}]$ Transfer Matrices

A: S parameters Measurements of LINE 1, LINE 2, REFLECT standards

- Same accesses
- Coplanar Transmission Lines with the same cross section
- Reflect with CPW Length = L1/2
- S parameters referenced to 50 Ω

Methodology of Z_c and γ extraction

2 - Calculation of $[T_{TL}]$ and $[T_{L_{access}}]$ Transfer matrices

B: LRL de-embedding procedure

Methodology of Z_C and γ extraction

IMEP-LAHC

3 - Calculation of the exponent of propagation γ from [T_{TL}] Matrix

Analyzed structures : 130 nm Cmos technology node

IMEP-LAHC

12

Results of Extracted γ and Z_c - Comparisons to Q3D simulations

Good agreement over the frequency band => method is validated

R, L parameters results - Comparisons to Q3D simulations

G parameter

C, G parameters results - Comparisons to Q3D simulations

C parameter

MEP-LAHC

Deviation beyond 30 GHz for G. Difficult to obtain G with accuracy due to its low impact on propagated signals at High Frequencies (G << C ω)

Electrical equivalent model used in the proposed method

Robustness of the Method

Process for checking the robustness

Electrical models of the 3 standards with series impedances Z_S included in accesses

Robustness of the Method

Results of Extracted Z_C Comparison to the true characteristic impedance

Good agreement over the frequency band => good robustness

Conclusion

- Turnkey extraction method of a T.L. characteristic impedance proposed

IMEP-LAHC

- Reliable method : good agreement with simulations

- Robust method for short accesses

- Perspective : Materials characterizations

Acknowledgement to the European Project SiPoB-3D – CATRENE Consortium - for supporting this work

Work carried out in the framework of the European project Catrène « SiPoB-3D »

23RD IEEE WORKSHOP ON SIGNAL AND POWER INTEGRITY

Thanks for your attention !

23RD IEEE WORKSHOP ON SIGNAL AND POWER INTEGRITY