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Manufacturing tolerances

 Predicted and measured responses can differ because of manufacturing 

variability, regardless of model accuracy

simulation

measurement
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 Uncertain parameters are collectively denoted as �

 Stochastic responses are modeled as expansions of polynomials 

orthonormal to the distribution of � [1]

Polynomial chaos expansion (PCE)
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� �, � ≈ � �� � ��(�)
�

�

orthonormal polynomialsdeterministic coefficients

uncertain
parameters

Uncertainty
Quantification

Calculation of PCE 
coefficients typically much 
faster than Monte Carlo

deterministic 
input stochastic 

output

[1] P. Manfredi, D. Vande Ginste, I. S. Stievano, D. De Zutter, and F.G. Canavero, “Stochastic transmission line 
analysis via polynomial chaos methods: an overview,” IEEE Electromagn. Compat. Mag. (2017).
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Simulation flow for lumped circuits

Physical level Component level Electrical output level

L

C

 Variability is usually modeled at component level

voltages
currents

Geometry, materials
Distribution:
standard (e.g., Gaussian)

Component values
Distribution: standard or
non-standard (but still independent)

PCE w.r.t.
component values
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terminal
voltages / currents

per-unit-length
RLGC 

parameters

terminal
voltages / currents

per-unit-length 
RLGC 

parameters
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Simulation flow for distributed transmission lines

Physical (low) level Component (mid) level Electrical (high) output level

 Variability is modeled at physical level because 

per-unit-length parameters are NOT independent!

variability

Modeling at 
component 

level possible?

PCE w.r.t.
physical params
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Step #0: identification of random variables

 A hierarchical approach is implemented, in which the new random 

variables are (mid-level) entries of per-unit-length matrices [2]

 A different variable is assigned to each distinct entry:

 Other properties/assumptions (e.g., PEC planes, shields, homogeneity) 

may lead to further reduction in the number of mid-level parameters �

 =
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[2] P. Manfredi, “A hierarchical approach to dimensionality reduction and nonparametric problems in the polynomial 
chaos simulation of transmission lines,” IEEE Trans. Electromagn. Compat. (early access)
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1. Dimensionality reduction when per-unit-length (mid-level) parameters are 

fewer than physical (low-level) parameters

2. Can deal with nonparametric problems, for which low-level parameters 

cannot be explicitly defined

3. Can achieve higher accuracy for a given expansion order

1:1 correspondence 
between physical and 
per-unit-length params

low level mid level high level
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Advantages

Cardinality: � < �

�  � ≈ � ���� �
�

�
� � ≈ � �!��!�(�)

�

�
� =  �per-unit-length 

parameters
classical PCE hierarchical PCE
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Step #1: mixture of Gaussians (MoG) fit

 Empirical distribution of per-unit-length parameters (dependent entries �) 

is fitted using a mixture of Gaussians (MoG)

 A MoG is a weighed combination of correlated Gaussian distributions

" � = � #$
%&�

� �&'( )*(+,(�&'()

det(21*$)�
2

$3�

weights means

covariance matrices

analytical
model

1D

2D4 = 2

4 = 3
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Step #2: calculation of suitable basis functions

 Classical PCE uses standard polynomials (available a priori)

 Suitable basis function to be computed for correlated MoG distribution

 This is achieved through Gram-Schmidt orthogonalization [3]

[3] C. Cui and Z. Zhang, “Stochastic collocation with non-Gaussian correlated process variations: theory, 
algorithms and applications,” IEEE Trans. Compon. Packag. Manuf. Technol. (early access).

Linearly 
independent 
monomials Ψ�

expectations = scalar coefficients
(computed analytically or numerically)

previously-computed polynomials
(iterative procedure)

(normalization)
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(orthogonalization)
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Step #3: stochastic Galerkin method

 Voltage and current PCE coefficients are computed via stochastic 

Galerkin method [1]

 To obtain transient results, the augmented transmission line can be:

 Simulated directly into SPICE (lossless lines)

 Solved in frequency domain and results post-processed with 

numerical inversion of Laplace transform (NILT) (lossy lines)

Galerkin
projection�

original, stochastic 

transmission line

; � < � => > ?> �> ��

��

augmented, deterministic 

transmission line

��
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Bfrequency

domain

time domain
HB = I + KLB
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Application #1: two wires

 Two wires with random position, geometry, and material properties [2]

MN
MN

low-level (physical):
4 coordinates (x-y) [constrained to avoid overlap]
4 geometrical (wire and dielectric radii)

2 material (dielectric permittivity)
TOTAL = 10

mid-level (per-unit-length):
� = ��
� = ��
TOTAL = 2

�

�
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Application #1: results
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Application #2: three wires above ground

 Three wires with completely random position (sequential placement) [2]

nonparametric
problem!

low-level (physical):
N/A

mid-level (per-unit-length):
6 per-unit-length inductance entries

6 per-unit-length capacitance entries
TOTAL = 12

�

�

classical 
PCE N/A !
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Application #2: results
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Conclusions
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 Novel hierarchical approach for stochastic analysis of transmission lines

 PCE-based modeling w.r.t. mid-level (per-unit-length) parameters

 Empirical distribution of per-unit-length parameters fitted using a MoG

 Suitable basis functions computed via Gram-Schmidt orthogonalization

 PCE coefficients of line response obtained with Galerkin-based simulation

 Higher accuracy for a given expansion order

 Possible dimensionality reduction (⇒ higher efficiency)

 Handling of nonparametric problems (e.g., sequential wire placement)
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Thank you for your attention!
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Application #1: MoG fit & polynomial basis

empirical distribution

MoG fit

number of MoG

components is 

increased until 
convergence
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Application #3: lossy stripline

 Stripline interconnect with frequency-dependent conductor losses

PEC

PEC

=PQ = ;�� 0
0 ;��

=SG = ;′�� ;′$
;′$ ;′��

U H, � = =PQ � + H/1� =SG � + HPQ(�)

PQ = ��� �$
�$ ���

�PQ = WXW�Y�PQ&�

PEC ground��

reciprocity

MN
Z

����

��

��

��

��

��

��

Homgeneous structure ⇒ C-matrix 
has explicit dependence on PQ!

SPICE model for frequency-dependent 
per-unit-length impedance matrix
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Application #3: results (5% variation)
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Application #3: results (10% variation)
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Application #3: accuracy & efficiency

error definition:


