A Hierarchical Approach to the Stochastic Analysis of Transmission Lines via Polynomial Chaos

P. Manfredi and R. Trinchero

paolo.manfredi@polito.it

POLITECNICO DI TORINO

Dipartimento di Elettronica e Telecomunicazioni

Manufacturing tolerances

Predicted and measured responses can differ because of manufacturing variability, regardless of model accuracy

Polynomial chaos expansion (PCE)

 \Box Uncertain parameters are collectively denoted as ξ

□ Stochastic responses are modeled as expansions of polynomials orthonormal to the distribution of ξ [1]

$$v(t,\boldsymbol{\xi}) \approx \sum_{k \not j} \frac{v_k(t)\varphi_k(\boldsymbol{\xi})}{\uparrow}$$

deterministic coefficients orthonormal polynomials

Calculation of PCE coefficients typically much faster than Monte Carlo

[1] P. Manfredi, D. Vande Ginste, I. S. Stievano, D. De Zutter, and F.G. Canavero, "Stochastic transmission line analysis via polynomial chaos methods: an overview," IEEE Electromagn. Compat. Mag. (2017).

Simulation flow for lumped circuits

Variability is usually modeled at component level

Simulation flow for distributed transmission lines

per-unit-length parameters are <u>NOT independent</u>!

Modeling at component level possible?

Step #0: identification of random variables

- □ A hierarchical approach is implemented, in which the new random variables are (mid-level) entries of per-unit-length matrices [2]
- □ A different variable is assigned to each distinct entry:

- \Box Other properties/assumptions (e.g., PEC planes, shields, homogeneity) may lead to further reduction in the number of mid-level parameters η
- [2] P. Manfredi, "A hierarchical approach to dimensionality reduction and nonparametric problems in the polynomial chaos simulation of transmission lines," IEEE Trans. Electromagn. Compat. (early access)

6

Advantages

1. Dimensionality reduction when per-unit-length (mid-level) parameters are fewer than physical (low-level) parameters

Cardinality: $|\eta| < |\xi|$

2. Can deal with nonparametric problems, for which low-level parameters cannot be explicitly defined

3. Can achieve higher accuracy for a given expansion order

$$v(f \not) \approx \sum_{k} v_{k} \varphi_{k}(\xi) \quad \Rightarrow v(\eta) \approx \sum_{k} \tilde{v}_{k} \tilde{\varphi}_{k}(\eta)$$
per-unit-length
parameters
$$\eta = f(\xi)$$
classical PCE
hierarchical PCE

Step #1: mixture of Gaussians (MoG) fit

- Empirical distribution of per-unit-length parameters (dependent entries η) is fitted using a mixture of Gaussians (MoG)
- A MoG is a weighed combination of correlated Gaussian distributions

Step #2: calculation of suitable basis functions

Classical PCE uses standard polynomials (available a priori)

- Suitable basis function to be computed for correlated MoG distribution
- □ This is achieved through Gram-Schmidt orthogonalization [3]

previously-computed polynomials (iterative procedure)

Linearly independent monomials $\{\Psi_k\}$

expectations = scalar coefficients (computed analytically or numerically)

[3] C. Cui and Z. Zhang, "Stochastic collocation with non-Gaussian correlated process variations: theory, algorithms and applications," IEEE Trans. Compon. Packag. Manuf. Technol. (early access).

Step #3: stochastic Galerkin method

Voltage and current PCE coefficients are computed via stochastic Galerkin method [1]

□ To obtain transient results, the augmented transmission line can be:

- Simulated directly into SPICE (lossless lines)
- Solved in frequency domain and results post-processed with numerical inversion of Laplace transform (NILT) (lossy lines)

Application #1: two wires

Two wires with random position, geometry, and material properties [2]

Application #1: results

emc group

Application #2: three wires above ground

Three wires with completely random position (sequential placement) [2]

:emc group

Conclusions

- □ Novel hierarchical approach for stochastic analysis of transmission lines
- PCE-based modeling w.r.t. mid-level (per-unit-length) parameters
- Empirical distribution of per-unit-length parameters fitted using a MoG
- Suitable basis functions computed via Gram-Schmidt orthogonalization
- □ PCE coefficients of line response obtained with Galerkin-based simulation
- Higher accuracy for a given expansion order
- \Box Possible dimensionality reduction (\Rightarrow higher efficiency)
- □ Handling of nonparametric problems (e.g., sequential wire placement)

References

[1] P. Manfredi, D. Vande Ginste, I. S. Stievano, D. De Zutter, and F.G. Canavero, "Stochastic transmission line analysis via polynomial chaos methods: an overview," IEEE Electromagn. Compat. Mag., vol. 6, no. 3, pp. 77–84, 2017.

[2] P. Manfredi, "A hierarchical approach to dimensionality reduction and nonparametric problems in the polynomial chaos simulation of transmission lines," IEEE Trans. Electromagn. Compat. (early access).

[3] C. Cui and Z. Zhang, "Stochastic collocation with non-Gaussian correlated process variations: theory, algorithms and applications," IEEE Trans. Compon. Packag. Manuf. Technol. (early access).

Thank you for your attention!

Application #1: MoG fit & polynomial basis

17

POLITECNICO DI TORINO

Application #3: lossy stripline

□ Stripline interconnect with frequency-dependent conductor losses

$$\mathbf{Z}(s,\boldsymbol{\xi}) = \mathbf{R}_{dc}(\boldsymbol{\xi}) + \sqrt{s/\pi}\mathbf{R}_{hf}(\boldsymbol{\xi}) + s\mathbf{L}_{dc}(\boldsymbol{\xi})$$

SPICE model for frequency-dependent per-unit-length impedance matrix

$$R_{dc} = \begin{pmatrix} R_{11} & 0 \\ 0 & R_{22} \end{pmatrix}_{\eta_2}$$

$$R_{hf} = \begin{pmatrix} R'_{11} & R'_m \\ R'_m & R'_{22} \end{pmatrix}_{\eta_4}$$
reciprocity
$$\eta_5$$

$$\boldsymbol{L}_{dc} = \begin{bmatrix} \boldsymbol{L}_{11} & \boldsymbol{L}_m \\ \boldsymbol{L}_m & \boldsymbol{L}_{22} \end{bmatrix}_{\eta_8}^{\eta_7}$$
$$\boldsymbol{C}_{dc} = \varepsilon_r \varepsilon_0 \mu_0 \boldsymbol{L}_{dc}^{-1}$$

 η_9

Homgeneous structure \Rightarrow C-matrix has explicit dependence on L_{dc} !

Application #3: results (5% variation)

Application #3: results (10% variation)

20

Application #3: accuracy & efficiency

error definition:
$$\mathcal{E} = \frac{1}{T} \int_0^T |\operatorname{Std}_{PC}(t) - \operatorname{Std}_{MC}(t)| dt$$

variation	quantity	order 1		order 2	
		CPC	HPC	CPC	HPC
	far-end transmission	2.9915e-04	1.9635e-04	8.6582e-05	8.1490e-05
5%	near-end crosstalk	4.1755e-04	2.4029e-04	1.2283e-04	1.1526e-04
	far-end crosstalk	2.6472e-04	1.3034e-04	6.7092e-05	5.9144e-05
	far-end transmission	9.3660e-04	5.8507e-04	3.5322e-04	4.4294e-04
10%	near-end crosstalk	2.6854e-03	1.1444e-03	9.2660e-04	6.8755e-04
	far-end crosstalk	1.0048e-03	4.6998e-04	2.8028e-04	3.7999e-04

Basis functions	(hierarchical PC, order 1):	3.2 s	
Augmented matrices	(classical PC, order 2):	49.7 s	
	(hierarchical PC, order 1):	0.3 s	(165x)
SPICE simulation	(classical PC, order 2):	57.2 s	
	(hierarchical PC, order 1):	2.4 s	(24x)

emc group