INFLUENCE OF DIFFERENT DIGITAL POWER SUPPLY LAYOUT STYLES ON THE EME OF ICS WITH RESPECT TO PROCESS VARIATIONS

Andreas Rauchenecker and Timm Ostermann Dept. Energy Efficient Analog Circuits and Systems Institute for Integrated Circuits JKU University of Linz/Austria

OVERVIEW

- Standard digital layout
- Test chip
- Process variations
- Measurement
- Conclusion

Standard cell/standard cell rows

standard cell/standard cell rows

VDD/VSS power stripes digital core/filler cells

VDD/VSS power rings

Delta sigma digital-to-analog converter ($\Delta\Sigma$ -DAC)

Delta sigma digital-to-analog converter ($\Delta\Sigma$ -DAC)

Top layout

250nm CMOS technology

approx. 32mm²

Top layout

Core	Layout Differences			
	Power Ring		Filler Cells	Power
	Width (VDD or VSS)	Arrangement	Capacitance	Stripes
DIG1	84µm	stacked	with	yes
DIG2	84µm	stacked	without	yes
DIG3	84µm	flattened	with	yes
DIG4	84µm	flattened	without	yes
DIG5	8.4µm	stacked	with	yes
DIG6	8.4µm	stacked	without	yes
DIG7	8.4µm	flattened	with	yes
DIG8	8.4µm	flattened	without	no
DIG9	2.1µm	stacked	with	yes

PROCESS VARIATIONS

Split-Lot with 9 different splits (2 wafers each split)

"NOM" → nominal case "FAST" → MOSFETs in fast process corner "SLOW" → MOSFETs in slow process corner "SF" → nMOSFETs slow / pMOSFETs fast "FS" → nMOSFETs fast / pMOSFETs fast "FS" → n-R max., p-R min. values "LRES" → n-R min., p-R max. values "LGL" → max. gate length values "SGL" → min. gate length values

$\begin{array}{l} \textbf{MEASUREMENT} \\ \rightarrow \textbf{TEST CHIP FUNCTIONALITY} \end{array}$

$\begin{array}{l} \textbf{MEASUREMENT} \\ \rightarrow \textbf{TEST CHIP FUNCTIONALITY} \end{array}$

Spartan 3an

روده Supply

DUT

MEASUREMENT

Victim $\rightarrow \Delta\Sigma$ -DAC1 @ 50MHz Victim $\rightarrow \Delta\Sigma$ -DAC5 @ 50MHz Criteria \rightarrow parasitic coupling of digital signals into analog output signal \rightarrow Spectrum analyzer @ analog AIF output

Aggressor \rightarrow 1 of the other DIG circuits @ 49.5 & 50.5 MHz clock

MEASUREMENT

Difference between 50 MHz coupling and interference at 49.5 MHz

AIF output $\Delta\Sigma$ -DAC1

AIF output $\Delta\Sigma$ -DAC5

MEASUREMENT \rightarrow IEC 61967 TEM CELL EME MEASURMENT

TEM cell with mounted test board

test board with DUT

- \rightarrow 1 50 Ω TEM cell port is terminated with 50 Ω load
- \rightarrow 1 50 Ω TEM-cell port is connected to the input of a spectrum analyzer
- \rightarrow DUT is measured four times, each time rotated by 90°

Measurement of $\Delta\Sigma$ -DAC1 (nominal corner) @ 50MHz, [9 kHz - 2 GHz]

MEASUREMENT \rightarrow IEC 61967 TEM CELL EME MEASURMENT

Differences between the measured EME of

 \rightarrow DIG3 (filler cells with capacitances)

 \rightarrow DIG4 (filler cells without capacitances)

JYU IIIC INSTITUTE FOR INTEGRATED CIRCUITS

MEASUREMENT \rightarrow IEC 61967 TEM CELL EME MEASURMENT

Influence of the power ring layout between DIG2 (stacked) and DIG3 (flattened)

Again no improvement over the whole frequency range can be observed for neither variant.

CONCLUSION

- Overall recommendation:
 - □ Stacking the power rings to save space can be recommended, at least as long as no routing problems occur.
 - Stacking of the power rings result in no degradation considering emissions.
 - Considering emissions only, the use of filler cells with capacitances has no benefits. Although their use can be recommended as they reduce on chip interferences.

THANK YOU!

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Strasse 69 4040 Linz, Austria www.jku.at