Power Delivery Network Pre-Layout Design Planning and Analysis Through Automated Scripting

Chad Smutzer

Mayo Clinic

Special Purpose Processor Development Group (SPPDG)

smutzer.chad@mayo.edu

23rd IEEE Workshop on Signal and Power Integrity (SPI) Chambéry, France June 18-21, 2019

- Contextual background on High Performance Compute (HPC) systems
- Motivation for pre-layout, automated Power Delivery Network (PDN) analysis in Printed Circuit Boards (PCB)
 - Process overview: File-driven inputs/outputs, tool integration
- Example 1: Simplified PCB pre-layout with broadband impedance Z(f) sensitivity
 - Sample decoupling capacitor quantity and location
- Example 2: First-level package pre-layout with DCIR current density analysis
 - Lumped vs. distributed loading
- Concluding remarks with additional practical applications
 MAYO
 CLINIC

- Contextual background on High Performance Compute (HPC) systems
- Motivation for pre-layout, automated Power Delivery Network (PDN) analysis in Printed Circuit Boards (PCB)
 - Process overview: File-driven inputs/outputs, tool integration
- Example 1: Simplified PCB pre-layout with broadband impedance Z(f) sensitivity
 - Sample decoupling capacitor quantity and location
- Example 2: First-level package pre-layout with DCIR current density analysis
 - Lumped vs. distributed loading
- Concluding remarks with additional practical applications

Background – High Performance Compute Systems

- Several high-power processing nodes (often > 500 W each) systematically arranged using high-speed interconnect (~56 Gbps) to solve complex computational problems
 - Components often include: processors/FPGAs, memory, voltage regulation, passives, cooling and packaging
- Performance and capability can be limited by poor signaland/or power-integrity design
 - Signaling rate dependent upon passive channel quality
 - Voltage noise dependent upon power distribution design
- Mayo Clinic SPPDG's role
 - Quick-turn, complex analyses, cost/schedule-aware, riskbased technical trade-space studies, etc.
- MAYO Stay ahead of critical design path

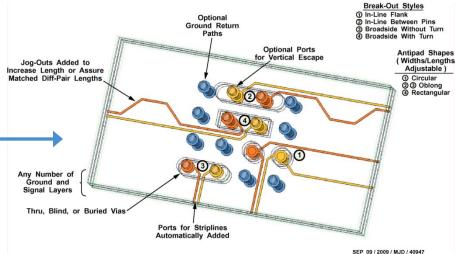
- Contextual background on High Performance Compute (HPC) systems
- Motivation for pre-layout, automated Power Delivery Network (PDN) analysis in Printed Circuit Boards (PCB)
 - Process overview: File-driven inputs/outputs, tool integration
- Example 1: Simplified PCB pre-layout with broadband impedance Z(f) sensitivity
 - Sample decoupling capacitor quantity and location
- Example 2: First-level package pre-layout with DCIR current density analysis
 - Lumped vs. distributed loading
- Concluding remarks with additional practical applications

Motivation – Pre Layout PDN Analysis (1)

- Typical or common PDN design flow is *Reactive*
 - Stackup construction based largely on signaling needs; number of layers, location of power planes, materials, etc.
 - Rules-of-thumb often used for decoupling capacitor selection and placement
 - Post-layout PDN impedance extraction with comparison to Target Impedance requirements
 - If power delivery goals are unmet, may require significant CAD layout iteration(s) impacting many critical design features (component placement, stackup and materials, layer net allocations, signal routing, etc.)
 - Frequently results in over- or under-engineered PDN with consequences to schedule and cost

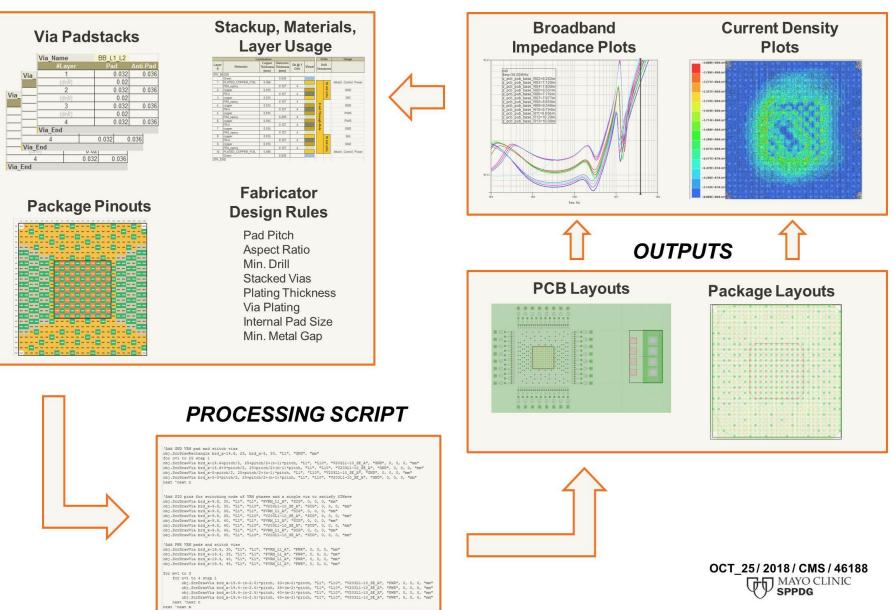
Motivation – Pre Layout PDN Analysis (2)

- Proposed PDN design flow is *Proactive*
 - Fast, efficient process to evaluate vast trade-space of power delivery design concepts prior to formal CAD implementation
 - Educational "what if" scenarios
 - Automation to create geometries (planes/shapes), place thousands of vias and decoupling capacitors, active devices, interfering connectors/breakouts etc.
 - Exploit seldom used feature in PDN simulation tools scripting to generate these structures and analysis setups
 - Process results optimize packaging resources to provide sufficient power delivery performance while considering signal integrity – SI/PI co-design



Process Overview – Pre Layout PDN Analysis

- SI engineers model and optimize high-speed signal channels and pinfield breakouts ("PinBuilder") —
- Similar process proposed for PDN structure evaluation
- Generate visual design inputs (spreadsheet-driven)
- Execute processing script
 - Create 3D structures in field solvers based on input files
 - Apply supporting elements (ports, sources/loads, setup, etc.)
- Perform traditional PDN extractions (broadband impedance extraction, current density, etc.)
- Modify design inputs and iterate processing script


SPPDG MAYO CLINIC

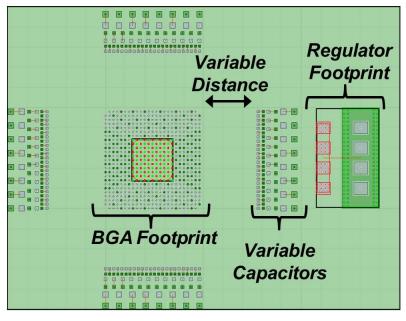
POWER DELIVERY NETWORK PRE-LAYOUT PLANNING AND ANALYSIS AUTOMATED SCRIPTING PROCESS

SIMULATION RESULTS

INPUTS

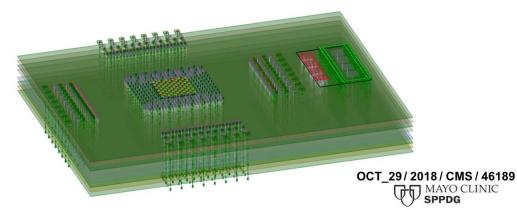
- Contextual background on High Performance Compute (HPC) systems
- Motivation for pre-layout, automated Power Delivery Network (PDN) analysis in Printed Circuit Boards (PCB)
 - Process overview: File-driven inputs/outputs, tool integration
- Example 1: Simplified PCB pre-layout with broadband impedance Z(f) sensitivity
 - Sample decoupling capacitor quantity and location
- Example 2: First-level package pre-layout with DCIR current density analysis
 - Lumped vs. distributed loading
- Concluding remarks with additional practical applications

Example 1 – PCB PDN: Capacitor Sensitivity (1)


- Typical question: How can we influence PDN impedance with top-side discrete capacitors?
- Simplistic example (process demonstration focused) to study impact of PCB capacitor quantity and placement location on broadband PDN impedance
 - Representative of typical processor card in HPC system
 - Varying quantity of 3 capacitor sizes (1206, 0805, 0402) distributed around BGA footprint
 - Include provisions (layers, pinfield voids, etc.) for signaling
- All dimensions and locations specified in external input files
 - Excel files (visual) for via padstacks, VRM footprint, BGA pinout, PCB construction, layer assignments

Text-based file for other geometries, PCB design rules

POWER DELIVERY NETWORK DESIGN AUTOMATION - PRINTED CIRCUIT BOARD LAYOUT EXAMPLE


(a) PCB – TOP VIEW

• 25 x 25	mm	BGA	footprint
-----------	----	-----	-----------

- 1 mm BGA pitch
- 60 BGA for power in center region

(c) PCB - 3D VIEW

Lamination				Drills	Layer Usage		
Layer #	Dielectric	Copper Thickness (mil)	Dielectric Thickness (mil)	Visual		Version A	Version B
	Green		1.5				
1	Plated copper	2.60				Attach	Attach
	FR4_epoxy		5				
2	copper	0.60				GND	GND
	FR-4		5				
3	copper	0.60				SIG	PWR
	FR4_epoxy		5				
4	copper	0.60				GND	GND
	FR-4		5		i i i		
5	copper	0.60			8 mil Through-Hole	PWR	SIG
	FR4_epoxy		9		20		
6	copper	0.60			lgt	PWR	SIG
	FR-4		5		÷		
7	copper	0.60			0 e	GND	GND
	FR4_epoxy		5				
8	copper	0.60				SIG	PWR
	FR-4		5				
9	copper	0.60				GND	GND
	FR4_epoxy		5				
10	Plated copper	2.60				Attach	Attach
	Green		1.5				

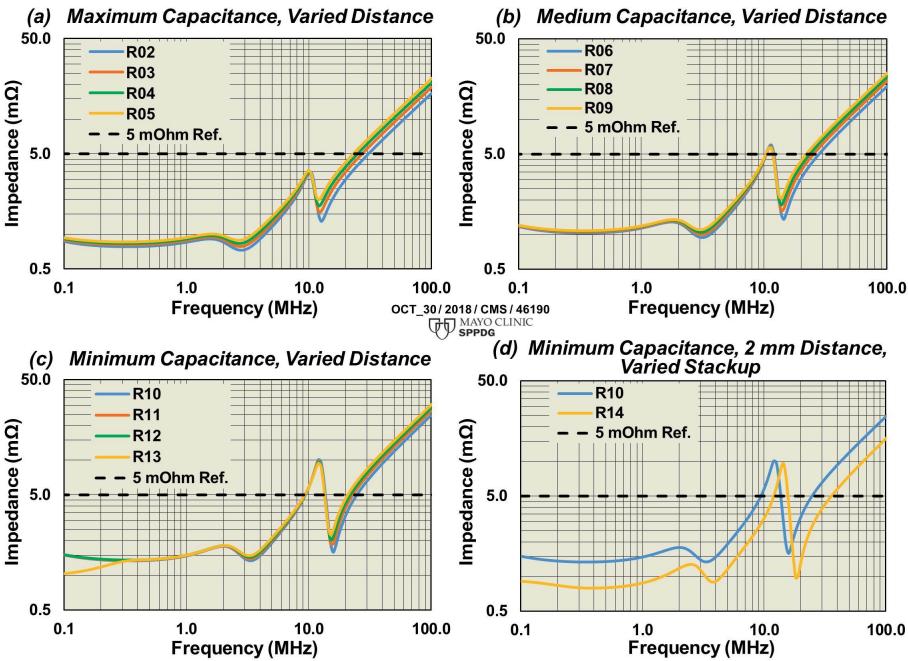
(b) STACKUP

(d) PCB VIA DESIGN

<u>L1 to L10</u>

Name: Drill Type: Drill Diameter: Inner Pad Diameter: Top Pad Diameter: Bottom Pad Diameter: Antipad Style: Antipad Diameter:

V203L1-10_SE_A Plated Thru Hole 0.203 (8 mil) 0.457 (18 mil) 0.254 (10 mil) NA Circle 0.635 (25 mil)


Example 1 – PCB PDN: Capacitor Sensitivity (2)

- Twelve configurations controlled through variables within the processing script
 - 4 distances
 - 3 capacitor quantities
- One additional configuration (layer net assignment) controlled through PCB construction spreadsheet
- Applied simulation ports to VDD/GND nets at BGA and VRM
- Extract broadband Z(f)

CLINIC

	Capacitor	Number of Capacitors						
Configuration	Distance (mm)	0402	0805	1206				
Stackup Version A (Power Layers in Center of Stack)								
R02: Max. Caps, 2mm	2	96	48	32				
R03: Max. Caps, 6mm	6	96	48	32				
R04: Max. Caps, 10mm	10	96	48	32				
R05: Max. Caps, 15mm	15	96	48	32				
R06: Med. Caps, 2mm	2	48	24	16				
R07: Med. Caps, 6mm	6	48	24	16				
R08: Med. Caps, 10mm	10	48	24	16				
R09: Med. Caps, 15mm	15	48	24	16				
R10: Min. Caps, 2mm	2	24	12	8				
R11: Min. Caps, 6mm	6	24	12	8				
R12: Min. Caps, 10mm	10	24	12	8				
R13: Min. Caps, 15mm	15	24	12	8				
Stackup Version B (Power Layers in Outer Portion of Stack)								
R14: Min. Caps, 2mm	2	24	12	8				

POWER DELIVERY NETWORK DESIGN AUTOMATION - PRINTED CIRCUIT BOARD BROADBAND IMPEDANCE PLOTS

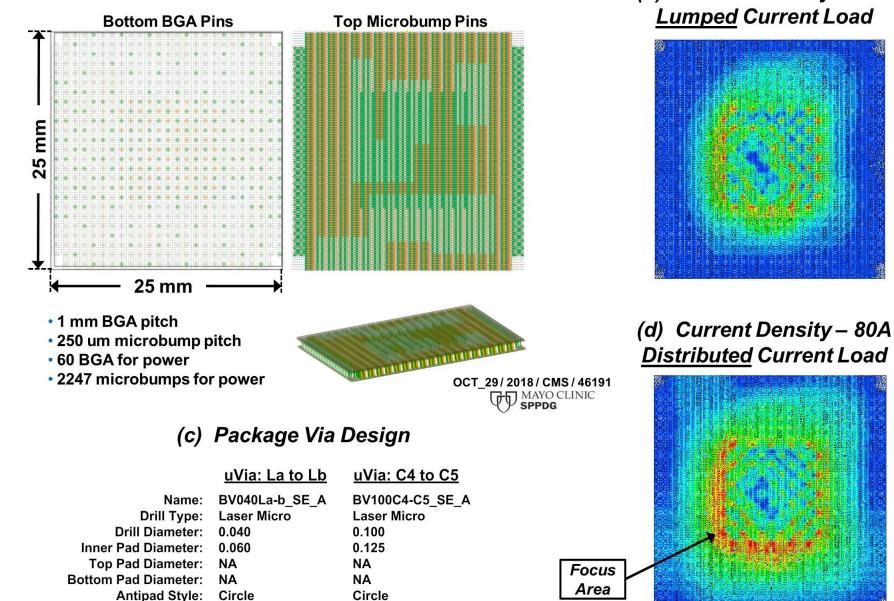
Example 1 – PCB PDN: Capacitor Sensitivity (3)

- Summary from 12 configurations of distance and quantity
 - Given the assumed PCB construction and layout, capacitor quantity had a greater impact on reducing PDN impedance than did the placement location
 - For each fixed number of capacitors, the placement location had very little influence on the impedance
- PCB capacitor loop inductance = mounted inductance + lateral (spreading) inductance + equivalent series inductance (ESL)
 - Speculated that via mounting inductance was dominant; hence, the effect of location was not being observed
 - Modified layer assignments (Version B) to reduce mounted inductance – observed appreciable impedance reduction for 2mm capacitor placement configuration

- Contextual background on High Performance Compute (HPC) systems
- Motivation for pre-layout, automated Power Delivery Network (PDN) analysis in Printed Circuit Boards (PCB)
 - Process overview: File-driven inputs/outputs, tool integration
- Example 1: Simplified PCB pre-layout with broadband impedance Z(f) sensitivity
 - Sample decoupling capacitor quantity and location
- Example 2: First-level package pre-layout with DCIR current density analysis
 - Lumped vs. distributed loading
- Concluding remarks with additional practical applications

Example 2 – First Level Package: PDN DCIR (1)

- Typical question: How can we strategically/proactively address current constriction and IR loss in micro-geometry designs?
- Simplistic example creates complex micro-geometry device package and analyzes using distributed and lumped loads
 - Represents typical first-level package for high-power IC
 - BGA interface on bottom, micro-bump interface on top
 - Include provisions (layers, pins, etc.) for signaling
- All dimensions and locations specified in external input files
 - Excel files (visual) for via padstacks, pinouts, construction
 - Text-based file for other geometries, fabricator design rules, distributed (per bump) current loads
- Script created 3D package with massive quantity of build-up vias and tiny geometries in minutes


POWER DELIVERY NETWORK DESIGN AUTOMATION - FIRST-LEVEL PACKAGE LAYOUT EXAMPLE

(b) Current Density – 80A

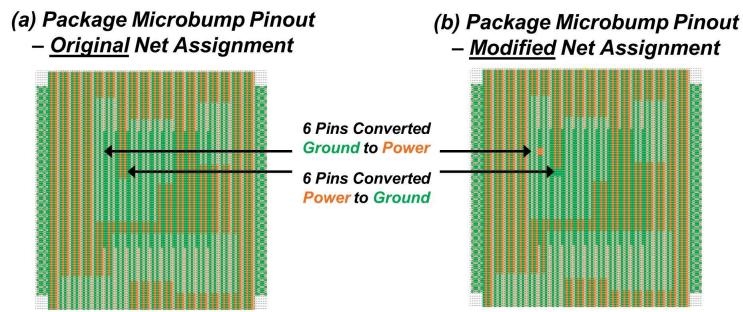
(a) Package Design

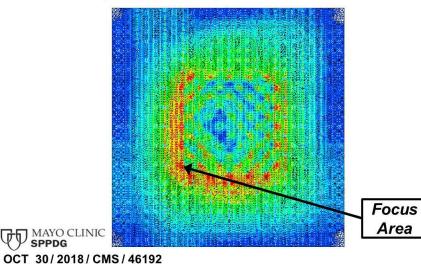
Antipad Diameter:

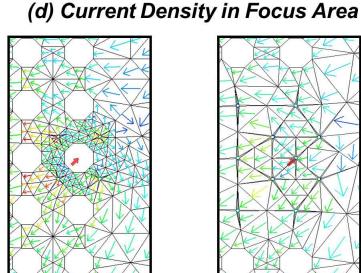
0.150

0.150

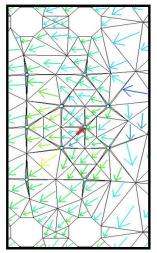
Example 2 – First Level Package: PDN DCIR (2)


- Common practice is to use lumped current load i.e. tie all micro-bumps together to singular current sink
 - Simple and straightforward compared to the tedious process of adding individual (per-bump) current sinks with PDN simulator GUI
 - Often applies inaccurate equipotential assumption to each micro-bump; hence voltage incorrectly bounded and current paths modified from reality
- IC designer may be able to provide accurate spatial current loading conditions to fine tune analysis assumptions
 - Processing script imports the pin current assignments to apply thousands of discrete sinks at each micro-bump


Example 2 – First Level Package: PDN DCIR (3)


- Observed dramatic difference in current density gradient between lumped and distributed load conditions for sample package with same total current applied (80A)
 - Not an unexpected PDN result, but analysis was made much simpler and more accurate through scripting process
- Re-assigned nets on several micro-bumps in spreadsheet within "focus area" of extreme high current density
 - Recreated geometry using script with updated assignments
 - Quickly quantify improvement in focus area
 - Step and repeat as necessary given targeted areas of highcurrent consumption
 - Potentially use information to also influence IC design, if
 possible reconsider active device layout

POWER DELIVERY NETWORK DESIGN AUTOMATION - PACKAGE CURRENT DENSITY **REDUCTION ANALYSIS RESULTS**



(c) Current Density – 80A **Distributed Current Load**

Original Net Assignment

Modified Net Assignment

- Contextual background on High Performance Compute (HPC) systems
- Motivation for pre-layout, automated Power Delivery Network (PDN) analysis in Printed Circuit Boards (PCB)
 - Process overview: File-driven inputs/outputs, tool integration
- Example 1: Simplified PCB pre-layout with broadband impedance Z(f) sensitivity
 - Sample decoupling capacitor quantity and location
- Example 2: First-level package pre-layout with DCIR current density analysis
 - Lumped vs. distributed loading

Concluding remarks with additional practical applications

Concluding Remarks (1)

- As we presented in a 2016 SPI paper, passive PDN design trade-space is vast and multi-faceted
 - Considerations include: materials, packaging density, signal bandwidth, decoupling capacitors, pinfield breakouts, via technology, fabricator capability, stackup construction, net assignments, stringent impedance requirements, etc.
 - Simultaneously satisfying SI and PI requirements in a singular design is a challenge
- Efficient, pre-layout PDN design process demonstrated
 - Exploits scripting capability in 3D EM solvers
 - "What if" PDN design scenarios evaluated quickly without need for CAD resources

Concluding Remarks (2)

- Examples shown were intended to demonstrate need for, and utility of, scripting process – intentionally simplistic
- Application of pre-layout analysis process can be extrapolated to much more complex design conditions
 - Multiple high-power ASICs attached to single carrier PCB with several multi-phase regulators providing core voltages
 - Emulates directional current flow to more accurately capture lateral package current density in DCIR simulation
 - Thousands of discrete capacitors with potential blockage from higher priority devices (connectors, memory, etc.)
 - Electro-thermal co-simulation in coupled analysis to evaluate thermal power dissipation and temperature gradients in passive packaging caused by Joule heating

THANK YOU!

Power Delivery Network Pre-Layout Design Planning and Analysis Through Automated Scripting

> Chad Smutzer smutzer.chad@mayo.edu

23rd IEEE Workshop on Signal and Power Integrity (SPI) June 18-21, 2019

SPPDG 46285 - **25**