On the Extension of the TurboMOR-RC Reduction Method to RLC Circuits

Fadime Bekmambetova and Piero Triverio

Edward S. Rogers Sr. Department of Electrical and Computer Engineering

Motivation: Simulation of modern VLSI systems

- Higher data rates
- Lower voltages
- Higher level of integration
- Parasitic electromagnetic effects become more and more important
- Need to be included in the simulation

short circuit \rightarrow RLC network

Source: amd.com

Motivation: Simulation of modern VLSI systems

- Higher data rates
- Lower voltages
- Higher level of integration
- Parasitic electromagnetic effects become more and more important
- Need to be included in the simulation

short circuit \rightarrow RLC network

Models of interconnect parasitics

Netlist	Number of nodes	Number of ports
PLL RC parasitics ¹	381k	4k
Receiver RC parasitics ¹	803k	15k
3D-IC power grid 2	9M	3.3M

- ¹ Ionuțiu, Rommes, & Schilders (2011)
- ² P.-W. Luo et al. (2013)

Model order reduction (MOR) via moment matching

Model order reduction (MOR) via moment matching

Model order reduction (MOR) via moment matching

Reduced model approximates the original by matching the first q moments around an expansion point (e.g. DC: $s_0 = 0$) $\mathbf{H}(s) = \mathbf{M}_0 + \mathbf{M}_1 s + \mathbf{M}_2 s^2 + \dots + \mathbf{M}_{q-1} s^{q-1} + \mathbf{M}_q s^q + \dots$ $\tilde{\mathbf{H}}(s) = \underbrace{\mathbf{M}_0 + \mathbf{M}_1 s + \mathbf{M}_2 s^2 + \dots + \mathbf{M}_{q-1} s^{q-1}}_{\text{matched}} + \underbrace{\hat{\mathbf{M}}_q s^q + \dots}_{\text{not matched}}$

• System with n states and p ports ($p \ll n$)

- System with n states and p ports ($p \ll n$)
- \bullet q iterations

- System with n states and p ports ($p \ll n$)
- \bullet q iterations
- Construct an orthogonal matrix $\mathbf{V}:~n\times qp$ tall & thin

- System with n states and p ports ($p \ll n$)
- q iterations
- Construct an orthogonal matrix V: $n \times qp$ tall & thin
- Perform congruence \rightarrow reduced model of size $\tilde{n} = qp$

- System with n states and p ports ($p \ll n)$
- q iterations
- Construct an orthogonal matrix V: $n \times qp$ tall & thin
- Perform congruence \rightarrow reduced model of size $\tilde{n} = qp$

- System with n states and p ports ($p \ll n)$
- q iterations
- Construct an orthogonal matrix V: $n \times qp$ tall & thin
- Perform congruence \rightarrow reduced model of size $\tilde{n} = qp$

- Time-consuming to orthogonalize the columns of V
- Time-consuming to carry out the projection

Approach	Works	Challenges
Node elimination based on time constants	TICER (RC) [Sheehan; 1999] RLC technique [Amin <i>et al.</i> ; 2005]	• Effectiveness is case-specific
Partitioning	BVOR [Yu, <i>et al.</i> ; 2006] SparseRC [Ionuțiu; 2011] PartMOR [Miettinen <i>et al.</i> ; 2011]	 RLC(K) equations are harder to partition than RC
Avoiding orthog- onalization	SIP [Ye et al.; 2008]	 RLC: 1 moment per expansion point Singular C case may require special treatment

Approach	Works	Challenges
Node elimination based on time constants	TICER (RC) [Sheehan; 1999] RLC technique [Amin <i>et al.</i> ; 2005]	• Effectiveness is case-specific
Partitioning	BVOR [Yu, <i>et al.</i> ; 2006] SparseRC [Ionuțiu; 2011] PartMOR [Miettinen <i>et al.</i> ; 2011]	 RLC(K) equations are harder to partition than RC
Avoiding orthog- onalization	SIP [Ye et al.; 2008]	 RLC: 1 moment per expansion point Singular C case may require special treatment

Approach	Works	Challenges
Node elimination based on time constants	TICER (RC) [Sheehan; 1999] RLC technique [Amin <i>et al.</i> ; 2005]	• Effectiveness is case-specific
Partitioning	BVOR [Yu, <i>et al.</i> ; 2006] SparseRC [lonuțiu; 2011] PartMOR [Miettinen <i>et al.</i> ; 2011]	 RLC(K) equations are harder to partition than RC
Avoiding orthog- onalization	SIP [Ye et al.; 2008]	 RLC: 1 moment per expansion point Singular C case may require special treatment

Approach	Works	Challenges
Node elimination based on time constants	TICER (RC) [Sheehan; 1999] RLC technique [Amin <i>et al.</i> ; 2005]	• Effectiveness is case-specific
Partitioning	BVOR [Yu, <i>et al.</i> ; 2006] SparseRC [lonuțiu; 2011] PartMOR [Miettinen <i>et al.</i> ; 2011]	 RLC(K) equations are harder to partition than RC
Avoiding orthog- onalization	SIP [Ye et al.; 2008]	 RLC: 1 moment per expansion point Singular C case may require special treatment

Approach	Works	Challenges
Node elimination based on time constants	TICER (RC) [Sheehan; 1999] RLC technique [Amin <i>et al.</i> ; 2005]	• Effectiveness is case-specific
Partitioning	BVOR [Yu, <i>et al.</i> ; 2006] SparseRC [Ionuțiu; 2011] PartMOR [Miettinen <i>et al.</i> ; 2011]	 RLC(K) equations are harder to partition than RC
Avoiding orthog- onalization	SIP [Ye et al.; 2008]	 RLC: 1 moment per expansion point Singular C case may require special treatment

Other RLC challenges:

- $\bullet\,$ Non-symmetric ${\bf G}\colon$ lose the RC ability to match 2 moments per iteration
 - More iterations are needed (larger reduced model, longer to compute)

Approach	Works	Challenges
Node elimination based on time constants	TICER (RC) [Sheehan; 1999] RLC technique [Amin <i>et al.</i> ; 2005]	• Effectiveness is case-specific
Partitioning	BVOR [Yu, <i>et al.</i> ; 2006] SparseRC [lonuțiu; 2011] PartMOR [Miettinen <i>et al.</i> ; 2011]	 RLC(K) equations are harder to partition than RC
Avoiding orthog- onalization	SIP [Ye et al.; 2008]	 RLC: 1 moment per expansion point Singular C case may require special treatment

Other RLC challenges:

- $\bullet\,$ Non-symmetric ${\bf G}\colon$ lose the RC ability to match 2 moments per iteration
 - More iterations are needed (larger reduced model, longer to compute)
- \bullet Resonant behaviour \rightarrow harder to achieve acceptable accuracy

Approach	Works	Challenges
Node elimination based on time constants	TICER (RC) [Sheehan; 1999] RLC technique [Amin <i>et al.</i> ; 2005]	• Effectiveness is case-specific
Partitioning	BVOR [Yu, <i>et al.</i> ; 2006] SparseRC [lonuțiu; 2011] PartMOR [Miettinen <i>et al.</i> ; 2011]	 RLC(K) equations are harder to partition than RC
Avoiding orthog- onalization	SIP [Ye et al.; 2008]	 RLC: 1 moment per expansion point Singular C case may require special treatment

Other RLC challenges:

- $\bullet\,$ Non-symmetric G: lose the RC ability to match 2 moments per iteration
 - More iterations are needed (larger reduced model, longer to compute)
- $\bullet\,$ Resonant behaviour $\to\,$ harder to achieve acceptable accuracy

Efficient reduction becomes much more difficult once you introduce inductors into the model.

TurboMOR-RC (Oyaro & Triverio; 2016)

TurboMOR-RC (Oyaro & Triverio; 2016)

Matches DC moments by decomposing the system into a cascade of subsystems with progressively smaller contribution to $\mathbf{H}(s)$

✓ Improved efficiency compared to PRIMA

TurboMOR-RC (Oyaro & Triverio; 2016)

- ✓ Improved efficiency compared to PRIMA
- \checkmark Scales better with the number of ports and nodes

TurboMOR-RC (Oyaro & Triverio; 2016)

- ✓ Improved efficiency compared to PRIMA
- \checkmark Scales better with the number of ports and nodes
- ✓ Reveals the subsystems (can be useful for analysis)

TurboMOR-RC (Oyaro & Triverio; 2016)

- ✓ Improved efficiency compared to PRIMA
- \checkmark Scales better with the number of ports and nodes
- ✓ Reveals the subsystems (can be useful for analysis)
- **X** Central assumption: $\mathbf{G} = \mathbf{G}^T \succeq 0$ (RC-only property)

TurboMOR-RC (Oyaro & Triverio; 2016)

Matches DC moments by decomposing the system into a cascade of subsystems with progressively smaller contribution to $\mathbf{H}(s)$

- ✓ Improved efficiency compared to PRIMA
- \checkmark Scales better with the number of ports and nodes
- ✓ Reveals the subsystems (can be useful for analysis)
- **X** Central assumption: $\mathbf{G} = \mathbf{G}^T \succeq 0$ (RC-only property)

Goal: Extend TurboMOR-RC to RLC case where this assumption is violated

MNA equations:

 \mathbf{x}_1 : port-related unknowns (p)

$$\begin{bmatrix} \mathbf{G}_{11} & \mathbf{G}_{12} \\ \mathbf{G}_{21} & \mathbf{G}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} \mathbf{C}_{11} & \mathbf{C}_{21}^T \\ \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{0} \end{bmatrix} \mathbf{u}$$
$$\mathbf{y} = \frac{1}{2} \begin{bmatrix} \mathbf{B}_1^T & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} - \mathbf{u}$$

MNA equations:

 \mathbf{x}_1 : port-related unknowns (p)

$$\begin{bmatrix} \mathbf{G}_{11} & \mathbf{G}_{12} \\ \mathbf{G}_{21} & \mathbf{G}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} \mathbf{C}_{11} & \mathbf{C}_{21}^T \\ \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{0} \end{bmatrix} \mathbf{u}$$
$$\mathbf{y} = \frac{1}{2} \begin{bmatrix} \mathbf{B}_1^T & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} - \mathbf{u}$$

MNA equations:

 \mathbf{x}_1 : port-related unknowns (p)

$$\begin{bmatrix} \mathbf{G}_{11} & \mathbf{G}_{12} \\ \mathbf{G}_{21} & \mathbf{G}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} \mathbf{C}_{11} & \mathbf{C}_{21}^T \\ \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{\dot{x}}_1 \\ \mathbf{\dot{x}}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{0} \end{bmatrix} \mathbf{u}$$
$$\mathbf{y} = \frac{1}{2} \begin{bmatrix} \mathbf{B}_1^T & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} - \mathbf{u}$$

MNA equations:

 \mathbf{x}_1 : port-related unknowns (p)

$$\begin{aligned} \mathbf{\hat{G}_{11}} & \mathbf{\hat{G}_{12}}\\ \mathbf{\hat{G}_{21}} & \mathbf{\hat{G}_{22}} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} \mathbf{C}_{11} & \mathbf{C}_{21}^T \\ \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{\dot{x}_1} \\ \mathbf{\dot{x}_2} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{0} \end{bmatrix} \mathbf{u} \\ \mathbf{y} = \frac{1}{2} \begin{bmatrix} \mathbf{B}_1^T & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} - \mathbf{u} \end{aligned}$$

MNA equations:

 \mathbf{x}_1 : port-related unknowns (p)

$$\begin{bmatrix} \mathbf{G}_{11} & \mathbf{G}_{12} \\ \mathbf{G}_{21} & \mathbf{G}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} \mathbf{C}_{11} & \mathbf{C}_{21}^T \\ \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{0} \end{bmatrix} \mathbf{u}$$
$$\mathbf{y} = \frac{1}{2} \begin{bmatrix} \mathbf{B}_1^T & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} - \mathbf{u}$$

MNA equations:

 \mathbf{x}_1 : port-related unknowns (p)

$$\begin{bmatrix} \mathbf{G}_{11} & \mathbf{G}_{12} \\ \mathbf{G}_{21} & \mathbf{G}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} \mathbf{C}_{11} & \mathbf{C}_{21}^T \\ \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{0} \end{bmatrix} \mathbf{u}$$
$$\mathbf{y} = \frac{1}{2} \begin{bmatrix} \mathbf{B}_1^T & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} - \mathbf{u}$$

MNA equations:

 \mathbf{x}_1 : port-related unknowns (p)

 \mathbf{x}_2 : all other unknowns (n-p)

 $\begin{bmatrix} \mathbf{G}_{11} & \mathbf{G}_{12} \\ \mathbf{G}_{21} & \mathbf{G}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} \mathbf{C}_{11} & \mathbf{C}_{21}^T \\ \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{\dot{x}}_1 \\ \mathbf{\dot{x}}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{0} \end{bmatrix} \mathbf{u}$ $\mathbf{y} = \frac{1}{2} \begin{bmatrix} \mathbf{B}_1^T & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} - \mathbf{u}$

MNA equations:

 \mathbf{x}_1 : port-related unknowns (p)

 \mathbf{x}_2 : all other unknowns (n-p)

 $\begin{bmatrix} \mathbf{G}_{11} & \mathbf{G}_{12} \\ \mathbf{G}_{21} & \mathbf{G}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} \mathbf{C}_{11} & \mathbf{C}_{21}^T \\ \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{\dot{x}}_1 \\ \mathbf{\dot{x}}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{0} \end{bmatrix} \mathbf{u}$ $\mathbf{y} = \frac{1}{2} \begin{bmatrix} \mathbf{B}_1^T & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} - \mathbf{u}$

MNA equations:

- \mathbf{x}_1 : port-related unknowns (p)
- \mathbf{x}_2 : all other unknowns (n-p)

$$\begin{bmatrix} \mathbf{G}_{11} & \mathbf{G}_{12} \\ \mathbf{G}_{21} & \mathbf{G}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} \mathbf{C}_{11} & \mathbf{C}_{21}^T \\ \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{0} \end{bmatrix} \mathbf{u}$$
$$\mathbf{y} = \frac{1}{2} \begin{bmatrix} \mathbf{B}_1^T & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} - \mathbf{u}$$

$$\mathbf{G}^{(1)} = \begin{bmatrix} \mathbf{M}_1^{(1)T} \\ \mathbf{0} & \mathbf{M}_2^{(2)T} \end{bmatrix} \begin{bmatrix} \mathbf{G}_{11} & \mathbf{G}_{12} \\ \mathbf{G}_{21} & \mathbf{G}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{M}_1^{(1)} & \mathbf{0} \\ \mathbf{M}_2^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(1)} \\ \mathbf{0} & \mathbf{G}_{22}^{(1)} \end{bmatrix}$$
Iteration 1: matching one moment at DC Congruence with $\mathbf{M}^{(1)} = \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{0} \\ \mathbf{M}_{2}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{G}_{22}^{-1}\mathbf{G}_{21} & \mathbf{G}_{22}^{-T} \end{bmatrix}$

$$\mathbf{G}^{(1)} = \begin{bmatrix} \mathbf{M}_{1}^{(1)T} \\ \mathbf{0} & \mathbf{M}_{2}^{(2)T} \end{bmatrix} \begin{bmatrix} \mathbf{G}_{11} & \mathbf{G}_{12} \\ \mathbf{G}_{21} & \mathbf{G}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{0} \\ \mathbf{M}_{2}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(1)} \\ \mathbf{0} & \mathbf{G}_{22}^{(1)} \end{bmatrix} - \mathbf{G}_{22}^{-1} \mathbf{G}_{21} \\ \text{eliminates } \mathbf{G}_{21}$$

$$\begin{split} \mathbf{G}^{(1)} &= \frac{\begin{bmatrix} \mathbf{M}_{1}^{(1)T} \\ \mathbf{0} & \mathbf{M}_{2}^{(2)T} \end{bmatrix} \begin{bmatrix} \mathbf{G}_{11} & \mathbf{G}_{12} \\ \mathbf{G}_{21} & \mathbf{G}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{M}_{2}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(1)} \\ \mathbf{0} \leftarrow \mathbf{G}_{22}^{(1)} \end{bmatrix} \\ \mathbf{C}^{(1)} &= \frac{\begin{bmatrix} \mathbf{M}_{1}^{(1)T} \\ \mathbf{0} & \mathbf{M}_{2}^{(2)T} \end{bmatrix} \begin{bmatrix} \mathbf{C}_{11} & \mathbf{C}_{21}^{T} \\ \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{0} \\ \mathbf{M}_{2}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(1)T} \\ \mathbf{C}_{21}^{(1)} & \mathbf{C}_{22}^{(1)} \end{bmatrix} \\ \mathbf{C}^{(1)} &= \begin{bmatrix} \mathbf{C}_{22}^{(1)} & \mathbf{C}_{21}^{(1)T} \\ \mathbf{C}_{21}^{(1)} & \mathbf{C}_{22}^{(1)} \end{bmatrix} \end{split}$$

$$\begin{aligned} \mathbf{G}^{(1)} &= \begin{bmatrix} \mathbf{M}_{1}^{(1)T} \\ \mathbf{0} & \mathbf{M}_{2}^{(2)T} \end{bmatrix} \begin{bmatrix} \mathbf{G}_{11} & \mathbf{G}_{12} \\ \mathbf{G}_{21} & \mathbf{G}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{0} \\ \mathbf{M}_{2}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(1)} \\ \mathbf{0} & \mathbf{G}_{22}^{(1)} \end{bmatrix} \\ \mathbf{C}^{(1)} &= \begin{bmatrix} \mathbf{M}_{1}^{(1)T} \\ \mathbf{0} & \mathbf{M}_{2}^{(2)T} \end{bmatrix} \begin{bmatrix} \mathbf{C}_{11} & \mathbf{C}_{21}^{T} \\ \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{0} \\ \mathbf{M}_{2}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(1)T} \\ \mathbf{C}_{21}^{(1)} & \mathbf{C}_{21}^{(1)} \end{bmatrix} \\ \mathbf{B}^{(1)} &= \begin{bmatrix} \mathbf{M}_{1}^{(1)T} \\ \mathbf{0} & \mathbf{M}_{2}^{(2)T} \end{bmatrix} \begin{bmatrix} \mathbf{B}_{1} \\ \mathbf{0} \end{bmatrix} \\ &= \begin{bmatrix} \mathbf{B}_{1} \\ \mathbf{0} \end{bmatrix} \end{aligned}$$

Iteration 1: matching one moment at DC Congruence with $\mathbf{M}^{(1)} = \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{0} \\ \mathbf{M}_{2}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{G}_{22}^{-1}\mathbf{G}_{21} & \mathbf{G}_{22}^{-T} \end{bmatrix}$

$$\mathbf{G}^{(1)} = \frac{\begin{bmatrix} \mathbf{M}_{1}^{(1)T} \\ \mathbf{0} & \mathbf{M}_{2}^{(2)T} \end{bmatrix} \begin{bmatrix} \mathbf{G}_{11} & \mathbf{G}_{12} \\ \mathbf{G}_{21} & \mathbf{G}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{M}_{2}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(1)} \\ \mathbf{0} & \mathbf{G}_{22}^{(1)} \end{bmatrix}$$

$$\mathbf{C}^{(1)} = \frac{\begin{bmatrix} \mathbf{M}_{1}^{(1)T} \\ \mathbf{0} & \mathbf{M}_{2}^{(2)T} \end{bmatrix} \begin{bmatrix} \mathbf{C}_{11} & \mathbf{C}_{21}^{T} \\ \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{0} \\ \mathbf{M}_{2}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(1)T} \\ \mathbf{C}_{21}^{(1)} & \mathbf{C}_{22}^{(1)} \end{bmatrix}$$

$$\mathbf{B}^{(1)} = \frac{\begin{bmatrix} \mathbf{M}_{1}^{(1)T} \\ \mathbf{0} & \mathbf{M}_{2}^{(2)T} \end{bmatrix} \begin{bmatrix} \mathbf{B}_{1} \\ \mathbf{0} \end{bmatrix} \qquad = \begin{bmatrix} \mathbf{B}_{1} \\ \mathbf{0} \end{bmatrix}$$

The zeros in ${f B}$ are preserved after ${f M}^{(1)T}{f B}$

$$\begin{split} S_{1}^{(1)} &: \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(1)} \\ \mathbf{0} & \mathbf{G}_{22}^{(1)} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2}^{(1)} \end{bmatrix} + \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(1)T} \\ \mathbf{C}_{21}^{(1)} & \mathbf{C}_{22}^{(1)} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}}_{1} \\ \dot{\mathbf{x}}_{2}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_{1} \\ \mathbf{0} \end{bmatrix} \mathbf{u} \\ \mathbf{y} &= \frac{1}{2} \begin{bmatrix} \mathbf{B}_{1}^{T} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2}^{(1)} \end{bmatrix} - \mathbf{u} \end{split}$$

$$\begin{split} S_{1}^{(1)} &: \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(1)} \\ \mathbf{S}_{2}^{(2)} &: \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(1)} \\ \mathbf{0} & \mathbf{G}_{22}^{(1)} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2}^{(1)} \end{bmatrix} + \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(1)T} \\ \mathbf{C}_{21}^{(1)} & \mathbf{C}_{22}^{(1)} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}}_{1} \\ \dot{\mathbf{x}}_{2}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_{1} \\ \mathbf{0} \end{bmatrix} \mathbf{u} \\ \mathbf{y} &= \frac{1}{2} \begin{bmatrix} \mathbf{B}_{1}^{T} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2}^{(1)} \end{bmatrix} - \mathbf{u} \end{split}$$

42

$$\begin{split} S_{1}^{(1)} &: \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(1)} \\ \mathbf{0} & \mathbf{G}_{22}^{(1)} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2}^{(1)} \end{bmatrix} + \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(1)T} \\ \mathbf{C}_{21}^{(1)} & \mathbf{C}_{22}^{(1)} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}}_{1} \\ \dot{\mathbf{x}}_{2}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_{1} \\ \mathbf{0} \end{bmatrix} \mathbf{u} \\ \mathbf{y} &= \frac{1}{2} \begin{bmatrix} \mathbf{B}_{1}^{T} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2}^{(1)} \end{bmatrix} - \mathbf{u} \end{split}$$

$$S_{1}^{(1)}: \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(1)} \\ \mathbf{0} & \mathbf{G}_{22}^{(1)} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2}^{(1)} \end{bmatrix} + \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(1)T} \\ \mathbf{C}_{21}^{(1)} & \mathbf{C}_{22}^{(1)} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}}_{1} \\ \dot{\mathbf{x}}_{2}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_{1} \\ \mathbf{0} \end{bmatrix} \mathbf{u}$$
$$\mathbf{y} = \frac{1}{2} \begin{bmatrix} \mathbf{B}_{1}^{T} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2}^{(1)} \end{bmatrix} - \mathbf{u}$$

$$\begin{split} S_{1}^{(1)} &: \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(1)} \\ \mathbf{0} & \mathbf{G}_{22}^{(1)} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2}^{(1)} \end{bmatrix} + \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(1)T} \\ \mathbf{C}_{21}^{(1)} & \mathbf{C}_{22}^{(1)} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}}_{1} \\ \dot{\mathbf{x}}_{2}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_{1} \\ \mathbf{0} \end{bmatrix} \mathbf{u} \\ \mathbf{y} &= \frac{1}{2} \begin{bmatrix} \mathbf{B}_{1}^{T} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2}^{(1)} \end{bmatrix} - \mathbf{u} \end{split}$$

$$\begin{split} S_{1}^{(1)} &: \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(1)} \\ \mathbf{0} & \mathbf{G}_{22}^{(1)} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2}^{(1)} \end{bmatrix} + \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(1)T} \\ \mathbf{C}_{21}^{(1)} & \mathbf{C}_{22}^{(1)} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}}_{1} \\ \dot{\mathbf{x}}_{2}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_{1} \\ \mathbf{0} \end{bmatrix} \mathbf{u} \\ \mathbf{y} &= \frac{1}{2} \begin{bmatrix} \mathbf{B}_{1}^{T} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2}^{(1)} \end{bmatrix} - \mathbf{u} \end{split}$$

$$\begin{split} S_{1}^{(1)} &: \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(1)} \\ \mathbf{S}_{2}^{(2)} &: \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(1)} \\ \mathbf{G}_{22}^{(1)} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2}^{(1)} \end{bmatrix} + \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(1)T} \\ \mathbf{C}_{21}^{(1)} & \mathbf{C}_{22}^{(1)} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}}_{1} \\ \dot{\mathbf{x}}_{2}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_{1} \\ \mathbf{0} \end{bmatrix} \mathbf{u} \\ \mathbf{y} &= \frac{1}{2} \begin{bmatrix} \mathbf{B}_{1}^{T} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2}^{(1)} \end{bmatrix} - \mathbf{u} \end{split}$$

Congruence transformation with $\mathbf{M}^{(1)} = \begin{bmatrix} \mathbf{M}_1^{(1)} & \mathbf{0} \\ \mathbf{M}_2^{(1)} \end{bmatrix}$

$$\mathbf{G}^{(1)} = \frac{\begin{bmatrix} \mathbf{M}_{1}^{(1)T} \\ \mathbf{0} & \mathbf{M}_{2}^{(2)T} \end{bmatrix} \begin{bmatrix} \mathbf{G}_{11} & \mathbf{G}_{12} \\ \mathbf{G}_{21} & \mathbf{G}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{0} \\ \mathbf{M}_{2}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(1)} \\ \mathbf{0} & \mathbf{G}_{22}^{(1)} \end{bmatrix}$$

(Similarly for $\mathbf{C}^{(1)}$ and $\mathbf{B}^{(1)}$)

Congruence transformation with $\mathbf{M}^{(1)} = \begin{bmatrix} \mathbf{M}_1^{(1)} & \mathbf{0} \\ \mathbf{M}_2^{(1)} \end{bmatrix}$

$$\mathbf{G}^{(1)} = \frac{\begin{bmatrix} \mathbf{M}_{1}^{(1)T} \\ \mathbf{0} & \mathbf{M}_{2}^{(2)T} \end{bmatrix} \begin{bmatrix} \mathbf{G}_{11} & \mathbf{G}_{12} \\ \mathbf{G}_{21} & \mathbf{G}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{0} \\ \mathbf{M}_{2}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12} \\ \mathbf{0} & \mathbf{G}_{22}^{(1)} \end{bmatrix}$$
(Similarly for $\mathbf{C}^{(1)}$ and $\mathbf{B}^{(1)}$)

 \bullet Only $\mathbf{G}_{11}^{(1)}$ is part of the reduced model

Congruence transformation with $\mathbf{M}^{(1)} = \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{0} \\ \mathbf{M}_{2}^{(1)} \end{bmatrix}$

$$\mathbf{G}^{(1)} = \begin{bmatrix} \mathbf{M}_{1}^{(1)T} \\ 0 & \mathbf{M}_{2}^{(2)T} \end{bmatrix} \begin{bmatrix} \mathbf{G}_{11} & \mathbf{G}_{12} \\ \mathbf{G}_{21} & \mathbf{G}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{M}_{2}^{(1)} \\ \mathbf{M}_{2}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(1)} \\ 0 & \mathbf{G}_{22}^{(1)} \end{bmatrix}$$
(Similarly for $\mathbf{C}^{(1)}$ and $\mathbf{B}^{(1)}$

• Only $\mathbf{G}_{11}^{(1)}$ is part of the reduced model

• Only need the first p columns of $\mathbf{M}^{(1)}$: $\mathbf{M}_1^{(1)} = \begin{bmatrix} \mathbf{I} \\ -\mathbf{G}_{22}^{-1}\mathbf{G}_{21} \end{bmatrix}$ - tall & thin

Congruence transformation with $\mathbf{M}^{(1)} = \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{0} \\ \mathbf{M}_{2}^{(1)} \end{bmatrix}$

$$\mathbf{G}^{(1)} = \begin{bmatrix} \mathbf{M}_{1}^{(1)T} \\ 0 & \mathbf{M}_{2}^{(2)T} \end{bmatrix} \begin{bmatrix} \mathbf{G}_{11} & \mathbf{G}_{12} \\ \mathbf{G}_{21} & \mathbf{G}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{M}_{2}^{(1)} \\ \mathbf{M}_{2}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(1)} \\ 0 & \mathbf{G}_{22}^{(1)} \end{bmatrix}$$
(Similarly for $\mathbf{C}^{(1)}$ and $\mathbf{B}^{(1)}$

 \bullet Only $\mathbf{G}_{11}^{(1)}$ is part of the reduced model

- Only need the first p columns of $\mathbf{M}^{(1)}$: $\mathbf{M}_{1}^{(1)} = \begin{bmatrix} \mathbf{I} \\ -\mathbf{G}_{22}^{-1}\mathbf{G}_{21} \end{bmatrix}$ tall & thin
- $\mathbf{G}_{22}^{-1}\mathbf{G}_{21}$ is computed efficiently using sparse LU factorization

Congruence transformation with $\mathbf{M}^{(1)} = \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{0} \\ \mathbf{M}_{2}^{(1)} \end{bmatrix}$

$$\mathbf{G}^{(1)} = \begin{bmatrix} \mathbf{M}_{1}^{(1)T} \\ 0 & \mathbf{M}_{2}^{(2)T} \end{bmatrix} \begin{bmatrix} \mathbf{G}_{11} & \mathbf{G}_{12} \\ \mathbf{G}_{21} & \mathbf{G}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{M}_{2}^{(1)} \\ \mathbf{M}_{2}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(1)} \\ 0 & \mathbf{G}_{22}^{(1)} \end{bmatrix}$$
(Similarly for $\mathbf{C}^{(1)}$ and $\mathbf{B}^{(1)}$

• Only $\mathbf{G}_{11}^{(1)}$ is part of the reduced model

- Only need the first p columns of $\mathbf{M}^{(1)}$: $\mathbf{M}_1^{(1)} = \begin{bmatrix} \mathbf{I} \\ -\mathbf{G}_{22}^{-1}\mathbf{G}_{21} \end{bmatrix}$ tall & thin
- $\mathbf{G}_{22}^{-1}\mathbf{G}_{21}$ is computed efficiently using sparse LU factorization
- Note: q = 1 reduced model is equivalent to SIP [Ye *et al.*; 2008]

$$S_{1}^{(1)}: \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(1)} \\ \mathbf{S}_{2}^{(2)}: \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(1)} \\ \mathbf{0} & \mathbf{G}_{22}^{(1)} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2}^{(1)} \end{bmatrix} + \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(1)T} \\ \mathbf{C}_{21}^{(1)} & \mathbf{C}_{22}^{(1)} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}}_{1} \\ \dot{\mathbf{x}}_{2}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_{1} \\ \mathbf{0} \end{bmatrix} \mathbf{u}$$
$$\mathbf{y} = \frac{1}{2} \begin{bmatrix} \mathbf{B}_{1}^{T} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2}^{(1)} \end{bmatrix} - \mathbf{u}$$

Iteration 2: matching two moments at DC $S_{1}^{(1)}: \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(1)} \\ \mathbf{0} & \mathbf{G}_{22}^{(1)} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2}^{(1)} \end{bmatrix} + \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(1)} \\ \mathbf{C}_{21}^{(1)} & \mathbf{C}_{22}^{(1)} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}}_{1} \\ \dot{\mathbf{x}}_{2}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_{1} \\ \mathbf{0} \end{bmatrix} \mathbf{u}$ $\mathbf{y} = \frac{1}{2} \begin{bmatrix} \mathbf{B}_1^T & \mathbf{0} \end{bmatrix} \begin{vmatrix} \mathbf{x}_1 \\ \mathbf{x}_2^{(1)} \end{vmatrix} - \mathbf{u}$ Intuition: ports u neglect $S_1^{(1)}$ contribution from $S_2^{(1)}$ Retain the part of $S_2^{(1)}$ that is significant. $\mathbf{C}_{21}^{(1)}$ plays the role of **B**. $\mathbf{\mathbf{x}}_1$ $-\mathbf{G}_{12}^{(1)}$ $\mathbf{x}_{2}^{(1)}$ $S_2^{(1)}$ is not controllable at DC $S_{2}^{(1)}$ (weakly controllable when s is small)

•
$$\mathbf{C}_{21}^{(1)} = \underbrace{\mathbf{G}_{22}^{-1} \begin{bmatrix} \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \mathbf{M}_{1}^{(1)}}_{\text{from iteration 1}}$$

•
$$\mathbf{C}_{21}^{(1)} = \underbrace{\mathbf{G}_{22}^{-1} \begin{bmatrix} \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \mathbf{M}_{1}^{(1)}}_{\text{from iteration 1}} \rightarrow \mathsf{QR: } \mathbf{C}_{21}^{(1)} = \begin{bmatrix} \mathbf{Q}_{2}^{(2)} & \mathbf{Q}_{3}^{(2)} \end{bmatrix} \begin{bmatrix} \mathbf{C}_{21}^{(2)} \\ \mathbf{0} \end{bmatrix} = \mathbf{Q}_{2}^{(2)} \mathbf{C}_{21}^{(2)}$$

•
$$\mathbf{C}_{21}^{(1)} = \underbrace{\mathbf{G}_{22}^{-1} \begin{bmatrix} \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \mathbf{M}_{1}^{(1)}}_{\text{from iteration 1}} \rightarrow \mathbf{QR}: \mathbf{C}_{21}^{(1)} = \begin{bmatrix} \mathbf{Q}_{2}^{(2)} & \mathbf{Q}_{3}^{(2)} \end{bmatrix} \begin{bmatrix} \mathbf{C}_{21}^{(2)} \\ \mathbf{0} \end{bmatrix} = \mathbf{Q}_{2}^{(2)} \mathbf{C}_{21}^{(2)}$$

• $\mathbf{M}^{(2)} = \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{0} & \mathbf{0} \\ \mathbf{M}_{2}^{(2)} & \mathbf{M}_{3}^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{0} & \mathbf{0} \\ \mathbf{Q}_{2}^{(2)} (\boldsymbol{\mathcal{G}}^{(2)})^{-T} & \mathbf{G}_{22}^{-T} \mathbf{Q}_{3}^{(2)} \end{bmatrix}$

•
$$\mathbf{C}_{21}^{(1)} = \underbrace{\mathbf{G}_{22}^{-1} \begin{bmatrix} \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \mathbf{M}_{1}^{(1)}}_{\text{from iteration 1}} \rightarrow \mathbf{QR}: \mathbf{C}_{21}^{(1)} = \begin{bmatrix} \mathbf{Q}_{2}^{(2)} & \mathbf{Q}_{3}^{(2)} \end{bmatrix} \begin{bmatrix} \mathbf{C}_{21}^{(2)} \\ \mathbf{0} \end{bmatrix} = \mathbf{Q}_{2}^{(2)} \mathbf{C}_{21}^{(2)}$$

• $\mathbf{M}^{(2)} = \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{0} & \mathbf{0} \\ \mathbf{M}_{2}^{(2)} & \mathbf{M}_{3}^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{0} & \mathbf{0} \\ \mathbf{Q}_{2}^{(2)} (\boldsymbol{\mathcal{G}}^{(2)})^{-T} & \mathbf{G}_{22}^{-T} \mathbf{Q}_{3}^{(2)} \end{bmatrix}$

$$\mathbf{G}^{(1)} = \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(2)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{G}_{22}^{(2)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{0} & \mathbf{G}_{33}^{(2)} \end{bmatrix} \quad \mathbf{C}^{(1)} = \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(2)T} & \mathbf{0} \\ \mathbf{C}_{21}^{(2)} & \mathbf{C}_{22}^{(2)} & \mathbf{C}_{32}^{(2)T} \\ \mathbf{0} & \mathbf{C}_{32}^{(2)} & \mathbf{C}_{33}^{(2)} \end{bmatrix} \quad \mathbf{B}^{(1)} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

•
$$\mathbf{C}_{21}^{(1)} = \underbrace{\mathbf{G}_{22}^{-1} \begin{bmatrix} \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \mathbf{M}_{1}^{(1)}}_{\text{from iteration 1}} \rightarrow \mathbf{QR}: \mathbf{C}_{21}^{(1)} = \begin{bmatrix} \mathbf{Q}_{2}^{(2)} & \mathbf{Q}_{3}^{(2)} \end{bmatrix} \begin{bmatrix} \mathbf{C}_{21}^{(2)} \\ \mathbf{0} \end{bmatrix} = \mathbf{Q}_{2}^{(2)} \mathbf{C}_{21}^{(2)}$$

• $\mathbf{M}^{(2)} = \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{0} & \mathbf{0} \\ \mathbf{M}_{2}^{(2)} & \mathbf{M}_{3}^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{0} & \mathbf{0} \\ \mathbf{Q}_{2}^{(2)} (\boldsymbol{\mathcal{G}}^{(2)})^{-T} & \mathbf{G}_{22}^{-T} \mathbf{Q}_{3}^{(2)} \end{bmatrix}$

$$\mathbf{G}^{(1)} = \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(2)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{G}_{22}^{(2)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{0} & \mathbf{G}_{33}^{(2)} \end{bmatrix} \quad \mathbf{C}^{(1)} = \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(2)T} & \mathbf{0} \\ \mathbf{C}_{21}^{(2)} & \mathbf{C}_{22}^{(2)} & \mathbf{C}_{32}^{(2)T} \\ \mathbf{0} & \mathbf{C}_{32}^{(2)} & \mathbf{C}_{33}^{(2)} \end{bmatrix} \quad \mathbf{B}^{(1)} = \begin{bmatrix} \mathbf{B}_{1} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

•
$$\mathbf{C}_{21}^{(1)} = \underbrace{\mathbf{G}_{22}^{-1} \begin{bmatrix} \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \mathbf{M}_{1}^{(1)}}_{\text{from iteration 1}} \rightarrow \mathbf{QR}: \mathbf{C}_{21}^{(1)} = \begin{bmatrix} \mathbf{Q}_{2}^{(2)} & \mathbf{Q}_{3}^{(2)} \end{bmatrix} \begin{bmatrix} \mathbf{C}_{21}^{(2)} \\ \mathbf{0} \end{bmatrix} = \mathbf{Q}_{2}^{(2)} \mathbf{C}_{21}^{(2)}$$

• $\mathbf{M}^{(2)} = \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{0} & \mathbf{0} \\ \mathbf{M}_{2}^{(2)} & \mathbf{M}_{3}^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{0} & \mathbf{0} \\ \mathbf{Q}_{2}^{(2)} (\boldsymbol{\mathcal{G}}^{(2)})^{-T} & \mathbf{G}_{22}^{-T} \mathbf{Q}_{3}^{(2)} \end{bmatrix}$

$$\mathbf{G}^{(1)} = \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(2)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{G}_{22}^{(2)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{0} & \mathbf{G}_{33}^{(2)} \end{bmatrix} \quad \mathbf{C}^{(1)} = \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(2)T} & \mathbf{0} \\ \mathbf{C}_{21}^{(2)} & \mathbf{C}_{22}^{(2)} & \mathbf{C}_{32}^{(2)T} \\ \mathbf{0} & \mathbf{C}_{32}^{(2)} & \mathbf{C}_{33}^{(2)} \end{bmatrix} \quad \mathbf{B}^{(1)} = \begin{bmatrix} \mathbf{B}_{1} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

•
$$\mathbf{C}_{21}^{(1)} = \underbrace{\mathbf{G}_{22}^{-1} \begin{bmatrix} \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \mathbf{M}_{1}^{(1)}}_{\text{from iteration 1}} \rightarrow \mathbb{QR}: \mathbf{C}_{21}^{(1)} = \begin{bmatrix} \mathbf{Q}_{2}^{(2)} & \mathbf{Q}_{3}^{(2)} \end{bmatrix} \begin{bmatrix} \mathbf{C}_{21}^{(2)} \\ \mathbf{0} \end{bmatrix} = \mathbf{Q}_{2}^{(2)} \mathbf{C}_{21}^{(2)}$$

• $\mathbf{M}^{(2)} = \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{0} & \mathbf{0} \\ \mathbf{M}_{2}^{(2)} & \mathbf{M}_{3}^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{0} & \mathbf{0} \\ \mathbf{Q}_{2}^{(2)} (\mathcal{G}^{(2)})^{-T} & \mathbf{G}_{22}^{-T} \mathbf{Q}_{3}^{(2)} \end{bmatrix}$

$$\mathbf{G}^{(1)} = \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(2)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{G}_{22}^{(2)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{0} & \mathbf{G}_{33}^{(2)} \end{bmatrix} \quad \mathbf{C}^{(1)} = \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(2)T} & \mathbf{0} \\ \mathbf{C}_{21}^{(2)} & \mathbf{C}_{22}^{(2)} & \mathbf{C}_{32}^{(2)T} \\ \mathbf{0} & \mathbf{C}_{32}^{(2)} & \mathbf{C}_{33}^{(2)} \end{bmatrix} \quad \mathbf{B}^{(1)} = \begin{bmatrix} \mathbf{B}_{1} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

•
$$\mathbf{C}_{21}^{(1)} = \underbrace{\mathbf{G}_{22}^{-1} \begin{bmatrix} \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \mathbf{M}_{1}^{(1)}}_{\text{from iteration 1}} \rightarrow \mathbf{QR}: \mathbf{C}_{21}^{(1)} = \begin{bmatrix} \mathbf{Q}_{2}^{(2)} & \mathbf{Q}_{3}^{(2)} \end{bmatrix} \begin{bmatrix} \mathbf{C}_{21}^{(2)} \\ \mathbf{0} \end{bmatrix} = \mathbf{Q}_{2}^{(2)} \mathbf{C}_{21}^{(2)}$$

• $\mathbf{M}^{(2)} = \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{0} & \mathbf{0} \\ \mathbf{M}_{2}^{(2)} & \mathbf{M}_{3}^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{0} & \mathbf{0} \\ \mathbf{Q}_{2}^{(2)} (\mathcal{G}^{(2)})^{-T} & \mathbf{G}_{22}^{-T} \mathbf{Q}_{3}^{(2)} \end{bmatrix}$

$$\mathbf{G}^{(1)} = \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(2)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{G}_{22}^{(2)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{0} & \mathbf{G}_{33}^{(2)} \end{bmatrix} \quad \mathbf{C}^{(1)} = \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(2)T} & \mathbf{0} \\ \mathbf{C}_{21}^{(2)} & \mathbf{C}_{22}^{(2)} & \mathbf{C}_{32}^{(2)T} \\ \mathbf{0} & \mathbf{C}_{32}^{(2)} & \mathbf{C}_{33}^{(2)} \end{bmatrix} \quad \mathbf{B}^{(1)} = \begin{bmatrix} \mathbf{B}_{1} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

•
$$\mathbf{C}_{21}^{(1)} = \underbrace{\mathbf{G}_{22}^{-1} \begin{bmatrix} \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \mathbf{M}_{1}^{(1)}}_{\text{from iteration 1}} \rightarrow \mathbf{QR}: \mathbf{C}_{21}^{(1)} = \begin{bmatrix} \mathbf{Q}_{2}^{(2)} & \mathbf{Q}_{3}^{(2)} \end{bmatrix} \begin{bmatrix} \mathbf{C}_{21}^{(2)} \\ \mathbf{0} \end{bmatrix} = \mathbf{Q}_{2}^{(2)} \mathbf{C}_{22}^{(2)}$$

• $\mathbf{M}^{(2)} = \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{0} & \mathbf{0} \\ \mathbf{M}_{2}^{(2)} & \mathbf{M}_{3}^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{0} & \mathbf{0} \\ \mathbf{Q}_{2}^{(2)} (\mathbf{\mathcal{G}}^{(2)})^{-T} & \mathbf{G}_{22}^{-T} \mathbf{Q}_{3}^{(2)} \end{bmatrix}$
where $\mathbf{\mathcal{G}}^{(2)} = \mathbf{Q}_{2}^{(2)T} \mathbf{G}_{22} \mathbf{Q}_{2}^{(2)}$
 $\mathbf{G}^{(1)} = \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(2)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{G}_{22}^{(2)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{G}_{33}^{(2)} \end{bmatrix} \mathbf{C}^{(1)} = \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(2)T} & \mathbf{0} \\ \mathbf{C}_{21}^{(2)} & \mathbf{C}_{22}^{(2)} & \mathbf{C}_{32}^{(2)} \\ \mathbf{0} & \mathbf{C}_{32}^{(2)} & \mathbf{C}_{33}^{(2)} \end{bmatrix} \mathbf{B}^{(1)} = \begin{bmatrix} \mathbf{B}_{1} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$

•
$$\mathbf{C}_{21}^{(1)} = \underbrace{\mathbf{G}_{22}^{-1} \begin{bmatrix} \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \mathbf{M}_{1}^{(1)}}_{\text{from iteration 1}} \rightarrow \mathbf{QR}: \mathbf{C}_{21}^{(1)} = \begin{bmatrix} \mathbf{Q}_{2}^{(2)} & \mathbf{Q}_{3}^{(2)} \end{bmatrix} \begin{bmatrix} \mathbf{C}_{21}^{(2)} \\ \mathbf{0} \end{bmatrix} = \mathbf{Q}_{2}^{(2)} \mathbf{C}_{22}^{(2)}$$

• $\mathbf{M}^{(2)} = \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{0} & \mathbf{0} \\ \mathbf{M}_{2}^{(2)} & \mathbf{M}_{3}^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{0} & \mathbf{0} \\ \mathbf{Q}_{2}^{(2)} (\mathbf{\mathcal{G}}^{(2)})^{-T} & \mathbf{G}_{22}^{-T} \mathbf{Q}_{3}^{(2)} \end{bmatrix}$
where $\mathbf{\mathcal{G}}^{(2)} = \mathbf{Q}_{2}^{(2)T} \mathbf{G}_{22} \mathbf{Q}_{2}^{(2)}$
 $\mathbf{G}^{(1)} = \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(2)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{G}_{22}^{(2)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{G}_{33}^{(2)} \end{bmatrix} \mathbf{C}^{(1)} = \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(2)T} & \mathbf{0} \\ \mathbf{C}_{21}^{(2)} & \mathbf{C}_{22}^{(2)} & \mathbf{C}_{32}^{(2)} \\ \mathbf{0} & \mathbf{C}_{32}^{(2)} & \mathbf{C}_{33}^{(2)} \end{bmatrix} \mathbf{B}^{(1)} = \begin{bmatrix} \mathbf{B}_{1} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$

•
$$\mathbf{C}_{21}^{(1)} = \underbrace{\mathbf{G}_{22}^{-1} \begin{bmatrix} \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \mathbf{M}_{1}^{(1)}}_{\text{from iteration 1}} \rightarrow \mathbf{QR}: \mathbf{C}_{21}^{(1)} = \begin{bmatrix} \mathbf{Q}_{2}^{(2)} & \mathbf{Q}_{3}^{(2)} \end{bmatrix} \begin{bmatrix} \mathbf{C}_{21}^{(2)} \\ \mathbf{0} \end{bmatrix} = \mathbf{Q}_{2}^{(2)} \mathbf{C}_{2}^{(2)}$$

• $\mathbf{M}^{(2)} = \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{0} & \mathbf{0} \\ \mathbf{M}_{2}^{(2)} & \mathbf{M}_{3}^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{M}_{1}^{(1)} & \mathbf{0} & \mathbf{0} \\ \mathbf{Q}_{2}^{(2)} (\mathbf{\mathcal{G}}^{(2)})^{-T} & \mathbf{G}_{22}^{-T} \mathbf{Q}_{3}^{(2)} \end{bmatrix}$
where $\mathbf{\mathcal{G}}^{(2)} = \mathbf{Q}_{2}^{(2)T} \mathbf{G}_{22} \mathbf{Q}_{2}^{(2)}$
 $\mathbf{G}^{(1)} = \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(2)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{G}_{22}^{(2)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{0} & \mathbf{G}_{33}^{(2)} \end{bmatrix} \quad \mathbf{C}^{(1)} = \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(2)T} & \mathbf{0} \\ \mathbf{C}_{21}^{(2)} & \mathbf{C}_{22}^{(2)} & \mathbf{C}_{32}^{(2)} \\ \mathbf{0} & \mathbf{C}_{32}^{(2)} & \mathbf{C}_{33}^{(2)} \end{bmatrix} \quad \mathbf{B}^{(1)} = \begin{bmatrix} \mathbf{B}_{1} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$

$$\begin{array}{c} S_1^{(1)} : \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(2)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{G}_{22}^{(2)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{0} & \mathbf{G}_{22}^{(2)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{0} & \mathbf{G}_{33}^{(2)} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2^{(2)} \\ \mathbf{x}_3^{(2)} \end{bmatrix} + \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(2)T} & \mathbf{0} \\ \mathbf{C}_{21}^{(2)} & \mathbf{C}_{22}^{(2)} & \mathbf{C}_{32}^{(2)T} \\ \mathbf{0} & \mathbf{C}_{32}^{(2)} & \mathbf{C}_{33}^{(2)} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2^{(2)} \\ \dot{\mathbf{x}}_3^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \mathbf{u}$$

$$\begin{array}{c} S_1^{(1)} : \begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(2)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{G}_{22}^{(2)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{0} & \mathbf{G}_{22}^{(2)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{0} & \mathbf{G}_{33}^{(2)} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2^{(2)} \\ \mathbf{x}_3^{(2)} \end{bmatrix} + \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(2)T} & \mathbf{0} \\ \mathbf{C}_{21}^{(2)} & \mathbf{C}_{22}^{(2)} & \mathbf{C}_{32}^{(2)T} \\ \mathbf{0} & \mathbf{C}_{32}^{(2)} & \mathbf{C}_{33}^{(2)} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2^{(2)} \\ \dot{\mathbf{x}}_3^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \mathbf{u}$$

Fadime Bekmambetova and Piero Triverio

June 18-21, 2019 12 / 19

Iteration 2: computation steps

Reduced system for q = 2 (completed computations)

$$\begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{G}_{22}^{(2)} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2^{(2)} \end{bmatrix} + \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(2)T} \\ \mathbf{C}_{21}^{(2)} & \mathbf{C}_{22}^{(2)} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{0} \end{bmatrix} \mathbf{u}$$

Iteration 2: computation steps

Reduced system for q = 2 (completed computations)

$$\begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{G}_{22}^{(2)} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2^{(2)} \end{bmatrix} + \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(2)T} \\ \mathbf{C}_{21}^{(2)} & \mathbf{C}_{22}^{(2)} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{0} \end{bmatrix} \mathbf{u}$$

• QR factorization: $\mathbf{C}_{21}^{(1)} = \mathbf{G}_{22}^{-1} \begin{bmatrix} \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \mathbf{M}_1^{(1)} = \mathbf{Q}_2^{(2)} \mathbf{C}_{21}^{(2)}$

Iteration 2: computation steps

Reduced system for q = 2 (completed computations)

$$\begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{G}_{22}^{(2)} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2^{(2)} \end{bmatrix} + \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(2)T} \\ \mathbf{C}_{21}^{(2)} & \mathbf{C}_{22}^{(2)} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{0} \end{bmatrix} \mathbf{u}$$

• QR factorization: $\mathbf{C}_{21}^{(1)} = \mathbf{G}_{22}^{-1} \begin{bmatrix} \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \mathbf{M}_1^{(1)} = \mathbf{Q}_2^{(2)} \mathbf{C}_{21}^{(2)}$
Reduced system for q = 2 (completed computations)

$$\begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{G}_{22}^{(2)} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2^{(2)} \end{bmatrix} + \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(2)T} \\ \mathbf{C}_{21}^{(2)} & \mathbf{C}_{22}^{(2)} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{0} \end{bmatrix} \mathbf{u}$$

QR factorization: $\mathbf{C}_{21}^{(1)} = \mathbf{G}_{22}^{-1} \begin{bmatrix} \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \mathbf{M}_{1}^{(1)} = \mathbf{Q}_{2}^{(2)} \mathbf{C}_{21}^{(2)}$

2 Compute $\mathbf{\mathcal{G}}^{(2)} = \mathbf{Q}_2^{(2)T} \mathbf{G}_{22} \mathbf{Q}_2^{(2)}$

Reduced system for q = 2 (completed computations)

$$\begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{G}_{22}^{(2)} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2^{(2)} \end{bmatrix} + \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(2)T} \\ \mathbf{C}_{21}^{(2)} & \mathbf{C}_{22}^{(2)} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{0} \end{bmatrix} \mathbf{u}$$

• QR factorization: $\mathbf{C}_{21}^{(1)} = \mathbf{G}_{22}^{-1} \begin{bmatrix} \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \mathbf{M}_{1}^{(1)} = \mathbf{Q}_{2}^{(2)} \mathbf{C}_{21}^{(2)}$

2 Compute $\boldsymbol{\mathcal{G}}^{(2)} = \mathbf{Q}_2^{(2)T} \mathbf{G}_{22} \mathbf{Q}_2^{(2)}$

• Compute
$$\mathbf{M}_2^{(2)} = \mathbf{Q}_2^{(2)} (\mathcal{G}^{(2)})^{-T}$$
. Recall: $\mathbf{M}^{(2)} = \begin{bmatrix} \mathbf{M}_1^{(1)} & \mathbf{0} & \mathbf{0} \\ \mathbf{M}_2^{(2)} & \mathbf{M}_3^{(2)} \end{bmatrix}$

Reduced system for q = 2 (completed computations)

$$\begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{G}_{22}^{(2)} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2^{(2)} \end{bmatrix} + \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(2)T} \\ \mathbf{C}_{21}^{(2)} & \mathbf{C}_{22}^{(2)} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{0} \end{bmatrix} \mathbf{u}$$

• QR factorization: $\mathbf{C}_{21}^{(1)} = \mathbf{G}_{22}^{-1} \begin{bmatrix} \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \mathbf{M}_{1}^{(1)} = \mathbf{Q}_{2}^{(2)} \mathbf{C}_{21}^{(2)}$

- **2** Compute $\mathcal{G}^{(2)} = \mathbf{Q}_2^{(2)T} \mathbf{G}_{22} \mathbf{Q}_2^{(2)}$
- Compute $\mathbf{M}_2^{(2)} = \mathbf{Q}_2^{(2)} (\mathcal{G}^{(2)})^{-T}$. Recall: $\mathbf{M}^{(2)} = \begin{bmatrix} \mathbf{M}_1^{(1)} & \mathbf{0} & \mathbf{0} \\ \mathbf{M}_2^{(2)} & \mathbf{M}_2^{(2)} \end{bmatrix}$
- Compute $\mathbf{G}_{12}^{(2)} = \mathbf{M}_1^{(1)T} \mathbf{G} \begin{bmatrix} \mathbf{0} \\ \mathbf{M}_2^{(2)} \end{bmatrix}$

Reduced system for q = 2 (completed computations)

$$\begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{G}_{22}^{(2)} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2^{(2)} \end{bmatrix} + \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(2)T} \\ \mathbf{C}_{21}^{(2)} & \mathbf{C}_{22}^{(2)} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{0} \end{bmatrix} \mathbf{u}$$

• QR factorization: $\mathbf{C}_{21}^{(1)} = \mathbf{G}_{22}^{-1} \begin{bmatrix} \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \mathbf{M}_{1}^{(1)} = \mathbf{Q}_{2}^{(2)} \mathbf{C}_{21}^{(2)}$

- **2** Compute $\mathcal{G}^{(2)} = \mathbf{Q}_2^{(2)T} \mathbf{G}_{22} \mathbf{Q}_2^{(2)}$
- Compute $\mathbf{M}_2^{(2)} = \mathbf{Q}_2^{(2)} (\mathcal{G}^{(2)})^{-T}$. Recall: $\mathbf{M}^{(2)} = \begin{bmatrix} \mathbf{M}_1^{(1)} & \mathbf{0} & \mathbf{0} \\ \mathbf{M}_2^{(2)} & \mathbf{M}_2^{(2)} \end{bmatrix}$
- Compute $\mathbf{G}_{12}^{(2)} = \mathbf{M}_1^{(1)T} \mathbf{G} \begin{bmatrix} \mathbf{0} \\ \mathbf{M}_2^{(2)} \end{bmatrix}$ • Compute $\mathbf{C}_{22}^{(2)} = \begin{bmatrix} \mathbf{0} & \mathbf{M}_2^{(2)T} \end{bmatrix} \mathbf{C} \begin{bmatrix} \mathbf{0} \\ \mathbf{M}_2^{(2)} \end{bmatrix}$

Reduced system for q = 2 (completed computations)

$$\begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{G}_{22}^{(2)} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2^{(2)} \end{bmatrix} + \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(2)T} \\ \mathbf{C}_{21}^{(2)} & \mathbf{C}_{22}^{(2)} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{0} \end{bmatrix} \mathbf{u}$$

• QR factorization: $\mathbf{C}_{21}^{(1)} = \mathbf{G}_{22}^{-1} \begin{bmatrix} \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \mathbf{M}_{1}^{(1)} = \mathbf{Q}_{2}^{(2)} \mathbf{C}_{21}^{(2)}$

- **2** Compute $\mathcal{G}^{(2)} = \mathbf{Q}_2^{(2)T} \mathbf{G}_{22} \mathbf{Q}_2^{(2)}$
- Compute $\mathbf{M}_2^{(2)} = \mathbf{Q}_2^{(2)} (\mathcal{G}^{(2)})^{-T}$. Recall: $\mathbf{M}^{(2)} = \begin{bmatrix} \mathbf{M}_1^{(1)} & \mathbf{0} & \mathbf{0} \\ \mathbf{M}_2^{(2)} & \mathbf{M}_2^{(2)} \end{bmatrix}$
- Compute $\mathbf{G}_{12}^{(2)} = \mathbf{M}_1^{(1)T} \mathbf{G} \begin{bmatrix} \mathbf{0} \\ \mathbf{M}_2^{(2)} \end{bmatrix}$
- Compute $\mathbf{C}_{22}^{(2)} = \begin{bmatrix} \mathbf{0} & \mathbf{M}_2^{(2)T} \end{bmatrix} \mathbf{C} \begin{bmatrix} \mathbf{0} \\ \mathbf{M}_2^{(2)} \end{bmatrix}$

• Result of simplification: $\mathbf{G}_{22}^{(2)} = (\boldsymbol{\mathcal{G}}^{(2)})^{-T}$

Reduced system for q = 2 (completed computations)

$$\begin{bmatrix} \mathbf{G}_{11}^{(1)} & \mathbf{G}_{12}^{(2)} \\ \mathbf{0} & \mathbf{G}_{22}^{(2)} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2^{(2)} \end{bmatrix} + \begin{bmatrix} \mathbf{C}_{11}^{(1)} & \mathbf{C}_{21}^{(2)T} \\ \mathbf{C}_{21}^{(2)} & \mathbf{C}_{22}^{(2)} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{0} \end{bmatrix} \mathbf{u}$$

• QR factorization: $\mathbf{C}_{21}^{(1)} = \mathbf{G}_{22}^{-1} \begin{bmatrix} \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \mathbf{M}_{1}^{(1)} = \mathbf{Q}_{2}^{(2)} \mathbf{C}_{21}^{(2)}$

- 2 Compute $\mathcal{G}^{(2)} = \mathbf{Q}_2^{(2)T} \mathbf{G}_{22} \mathbf{Q}_2^{(2)}$
- Compute $\mathbf{M}_2^{(2)} = \mathbf{Q}_2^{(2)} (\mathcal{G}^{(2)})^{-T}$. Recall: $\mathbf{M}^{(2)} = \begin{bmatrix} \mathbf{M}_1^{(1)} & \mathbf{0} & \mathbf{0} \\ \mathbf{M}_2^{(2)} & \mathbf{M}_2^{(2)} \end{bmatrix}$
- Compute $\mathbf{G}_{12}^{(2)} = \mathbf{M}_1^{(1)T} \mathbf{G} \begin{bmatrix} \mathbf{0} \\ \mathbf{M}_2^{(2)} \end{bmatrix}$
- Compute $\mathbf{C}_{22}^{(2)} = \begin{bmatrix} \mathbf{0} & \mathbf{M}_2^{(2)T} \end{bmatrix} \mathbf{C} \begin{bmatrix} \mathbf{0} \\ \mathbf{M}_2^{(2)} \end{bmatrix}$

• Result of simplification: $\mathbf{G}_{22}^{(2)} = (\boldsymbol{\mathcal{G}}^{(2)})^{-T}$

- PRIMA: 2 moments $\rightarrow 2p$ orthogonal vectors in V (p = port count)
- Proposed: 2 moments $ightarrow \, p$ orthogonal vectors in ${f Q}_2^{(2)}$

• Connection to the next system is only through $\mathbf{C}_{21}^{(2)}, \ldots, \mathbf{C}_{q+1,q}^{(q)}$ block

• Connection to the next system is only through $\mathbf{C}_{21}^{(2)},\ldots,\mathbf{C}_{q+1,q}^{(q)}$ block

This creates a cascade of systems with progressively weaker excitation

• Connection to the next system is only through $\mathbf{C}_{21}^{(2)}, \ldots, \mathbf{C}_{q+1,q}^{(q)}$ block

- This creates a cascade of systems with progressively weaker excitation
- The last system (large in size) can be neglected $\rightarrow qp imes qp$ reduced model

- Connection to the next system is only through $\mathbf{C}_{21}^{(2)}, \ldots, \mathbf{C}_{a+1,q}^{(q)}$ block
- This creates a cascade of systems with progressively weaker excitation
- The last system (large in size) can be neglected ightarrow qp imes qp reduced model
- Provably passive

- Connection to the next system is only through $\mathbf{C}_{21}^{(2)}, \ldots, \mathbf{C}_{q+1,q}^{(q)}$ block
- This creates a cascade of systems with progressively weaker excitation
- The last system (large in size) can be neglected $\rightarrow qp imes qp$ reduced model
- Provably passive
- Matches q moments at DC

IBM power grid benchmarks

ibmpg1t and ibmpg2t [Z. Li, P. Li, & S. R. Nassif; 2011]

Connections to external power source Power Grid Wires Power Grid Wires Connections to external power source

Small part of a typical benchmark [Nassif; 2008]

Benchmark	Nodes	R	С	L	p
ibmpg1t	25k	41k	11k	277	V: 100, I: 9k
ibmpg2t	164k	245k	37k	330	V: 120, I: 37k

IBM power grid benchmarks

ibmpg1t and ibmpg2t [Z. Li, P. Li, & S. R. Nassif; 2011]

Connections to external power source Power Grid Wires Power Grid Wires For the source of the sour

Small part of a typical benchmark [Nassif; 2008]

Benchmark	Nodes	R	C	L	p
ibmpg1t	25k	41k	11k	277	V: 100, I: 9k
ibmpg2t	164k	245k	37k	330	V: 120, I: 37k

We select different subsets of these ports.

Test 1: accuracy of reduced model

Benchmark: ibmpg2t (n = 164k, p = 750)

Waveforms at node n0_3968_6546 (output with worst case error)

Test 1: accuracy of reduced model

Benchmark: ibmpg2t (n = 164k, p = 750)

Waveforms at node n0_3968_6546 (output with worst case error)

Error PRIMA vs original: 4.88% Error Proposed vs original: 4.88%

Test 2: reduction time vs number of iterations

Benchmark: ibmpg2t (n = 164k, p = 900)

q	Reduct	Speedup	
	PRIMA Proposed		
1	31.1 s	12.2 s	×2.55
2	84.0 s	56.7 s	×1.48
3	143.4 s	119.2 s	×1.20
4	225.0 s	205.2 s	×1.10

Test 2: reduction time vs number of iterations

Benchmark: ibmpg2t (n = 164k, p = 900)

q	Reduct	Speedup	
	PRIMA Proposed		
1	31.1 s	12.2 s	×2.55
2	84.0 s	56.7 s	×1.48
3	143.4 s	119.2 s	×1.20
4	225.0 s	205.2 s	×1.10

We achieve some speedup for small q. But the speedup tends to decrease when q increases.

Test 3: reduction for acceptable error

- \bullet Benchmarks: ibmpg1t and ibmpg2t with different p
- $\bullet~q$ selected to bring the error at each port below 5%

p	\boldsymbol{q}	Reduction time		Speedup	Error				
		PRIMA	Proposed	Speedup	PRIMA	Proposed			
ibmpg1t (original states: 26k)									
183	7	5.6 s	7.8 s	×0.72	2.2%	2.2%			
477	5	14.2 s	14.3 s	×0.99	0.2%	0.2%			
717	4	19.4 s	17.3 s	×1.12	0.3%	0.3%			
847	3	15.5 s	12.2 s	×1.27	2.6%	2.6%			
ibmpg2t (original states: 164k)									
200	6	53.6 s	61.1 s	×0.88	3.4%	3.4%			
500	5	137.4 s	137.2 s	×1.00	0.2%	0.2%			
750	3	117.0 s	90.8 s	×1.29	4.9%	4.9%			
900	3	143.4 s	119.2 s	×1.20	3.0%	3.0%			

Test 3: reduction for acceptable error

- \bullet Benchmarks: ibmpg1t and ibmpg2t with different p
- $\bullet~q$ selected to bring the error at each port below 5%

p	\boldsymbol{q}	Reduction time		Speedup	Error				
		PRIMA	Proposed	Speedup	PRIMA	Proposed			
ibmpg1t (original states: 26k)									
183	7	5.6 s	7.8 s	×0.72	2.2%	2.2%			
477	5	14.2 s	14.3 s	×0.99	0.2%	0.2%			
717	4	19.4 s	17.3 s	×1.12	0.3%	0.3%			
847	3	15.5 s	12.2 s	×1.27	2.6%	2.6%			
ibmpg2t (original states: 164k)									
200	6	53.6 s	61.1 s	×0.88	3.4%	3.4%			
500	5	137.4 s	137.2 s	×1.00	0.2%	0.2%			
750	3	117.0 s	90.8 s	×1.29	4.9%	4.9%			
900	3	143.4 s	119.2 s	×1.20	3.0%	3.0%			

Test 3: reduction for acceptable error

- \bullet Benchmarks: ibmpg1t and ibmpg2t with different p
- q selected to bring the error at each port below 5%

p	q	Reduction time		Speedup	Error				
		PRIMA	Proposed	Speedup	PRIMA	Proposed			
ibmpg1t (original states: 26k)									
183	7	5.6 s	7.8 s	×0.72	2.2%	2.2%			
477	5	14.2 s	14.3 s	×0.99	0.2%	0.2%			
717	4	19.4 s	17.3 s	×1.12	0.3%	0.3%			
847	3	15.5 s	12.2 s	×1.27	2.6%	2.6%			
ibmpg2t (original states: 164k)									
200	6	53.6 s	61.1 s	×0.88	3.4%	3.4%			
500	5	137.4 s	137.2 s	×1.00	0.2%	0.2%			
750	3	117.0 s	90.8 s	×1.29	4.9%	4.9%			
900	3	143.4 s	119.2 s	×1.20	3.0%	3.0%			

- We proposed an extension of TurboMOR-RC to RLC circuits
 - \blacktriangleright Non-trivial: the assumptions on the properties of ${\bf G}$ are violated

- We proposed an extension of TurboMOR-RC to RLC circuits
 - \blacktriangleright Non-trivial: the assumptions on the properties of ${\bf G}$ are violated
- $\bullet\,$ The algorithm can provide some speedup if q is not too high

- We proposed an extension of TurboMOR-RC to RLC circuits
 - > Non-trivial: the assumptions on the properties of G are violated
- $\bullet\,$ The algorithm can provide some speedup if q is not too high
- $\bullet\,$ Tends to happen for large p

- We proposed an extension of TurboMOR-RC to RLC circuits
 - ▶ Non-trivial: the assumptions on the properties of G are violated
- $\bullet\,$ The algorithm can provide some speedup if q is not too high
- $\bullet\,$ Tends to happen for large p
- \bullet Interesting property: large p is a difficult case for state of the art methods

- We proposed an extension of TurboMOR-RC to RLC circuits
 - \blacktriangleright Non-trivial: the assumptions on the properties of ${\bf G}$ are violated
- $\bullet\,$ The algorithm can provide some speedup if q is not too high
- $\bullet\,$ Tends to happen for large p
- $\bullet\,$ Interesting property: large p is a difficult case for state of the art methods
- Speedups are very modest if they happen still work in progress

- We proposed an extension of TurboMOR-RC to RLC circuits
 - \blacktriangleright Non-trivial: the assumptions on the properties of ${\bf G}$ are violated
- $\bullet\,$ The algorithm can provide some speedup if q is not too high
- $\bullet\,$ Tends to happen for large p
- \bullet Interesting property: large p is a difficult case for state of the art methods
- Speedups are very modest if they happen still work in progress
- We hope that the proposed ideas could be useful for achieving efficient reduction of RLC parasitics.

- We proposed an extension of TurboMOR-RC to RLC circuits
 - \blacktriangleright Non-trivial: the assumptions on the properties of ${\bf G}$ are violated
- $\bullet\,$ The algorithm can provide some speedup if q is not too high
- $\bullet\,$ Tends to happen for large p
- \bullet Interesting property: large p is a difficult case for state of the art methods
- Speedups are very modest if they happen still work in progress
- We hope that the proposed ideas could be useful for achieving efficient reduction of RLC parasitics.

Thank you!

Acknowledgements:

- Canada Research Chairs program
- Ontario Early Researcher Award program
- NSERC Postgraduate Scholarships-Doctoral Program