A BAYESIAN APPROACH TO ADAPTIVE FREQUENCY SAMPLING

Simon De Ridder — simon.deridder@ugent.be
OVERVIEW

1 MOTIVATION

2 LINEAR BAYESIAN VECTOR FITTING

3 EXAMPLE
 - HAIRPIN FILTER

4 SUMMARY
MOTIVATION
THE NEED FOR ADAPTIVE FREQUENCY SAMPLING

- Characterization of devices through simulations is essential to design.

- Simulation at every frequency often too expensive.

- Need a broadband characterization with few simulations.
ADAPTIVE FREQUENCY SAMPLING

SEQUENTIAL STRATEGY

Classic approach: sweep over frequency range
Adaptive frequency sampling (AFS): Sequentially simulate at one frequency at a time. Support points → one or several macromodels → new simulation.
Adaptive Frequency Sampling
Sequential strategy

Classic approach: sweep over frequency range
Adaptive frequency sampling (AFS): Sequentially simulate at one frequency at a time. Support points → one or several macromodels → new simulation.
Adaptive Frequency Sampling

Sequential strategy

Classic approach: sweep over frequency range

Adaptive frequency sampling (**AFS**): Sequentially simulate at one frequency at a time. Support points → one or several macromodels → new simulation.
Adaptive Frequency Sampling

Sequential Strategy

Classic approach: sweep over frequency range

Adaptive frequency sampling (AFS): Sequentially simulate at one frequency at a time. Support points → one or several macromodels → new simulation.
Adaptive Frequency Sampling

Sequential Strategy

Classic approach: sweep over frequency range

Adaptive frequency sampling (AFS): Sequentially simulate at one frequency at a time. Support points → one or several macromodels → new simulation.
Adaptive Frequency Sampling

Sequential strategy

Classic approach: sweep over frequency range
Adaptive frequency sampling (AFS): Sequentially simulate at one frequency at a time.

support points → one or several macromodels → new simulation.
Adaptive Frequency Sampling

Sequential Strategy

Classic approach: sweep over frequency range

Adaptive frequency sampling (**AFS**): Sequentially simulate at one frequency at a time. Support points \rightarrow one or several macromodels \rightarrow new simulation.
LINEAR BAYESIAN VECTOR FITTING
Goal of VF: modeling transfer function (e.g. S-parameters)
Approximate the transfer function with a rational pole/residue model

\[
\overline{F}(s) \approx \sum_{k=1}^{K} \frac{\overline{R}_k}{s - \overline{a}_k} + \overline{D} + \overline{sE}
\]

→ Nonlinear problem due to \(a_k \).
CLASSIC VECTOR FITTING

Starting poles q_k → Identify residues of denominator → Calculate relocated poles → Identify residues R_k

Rewrite as

$$
\bar{F}(s) = \frac{\bar{p}(s)}{\sigma(s)} = \frac{\sum_{k=1}^{K} \frac{\hat{r}_k}{s - q_k} + \hat{d} + \bar{e}}{\sum_{k=1}^{K} \frac{\hat{r}_k}{s - q_k} + \hat{d}}
$$

Solve $\sigma(s)\bar{F}(s) = \bar{p}(s)$ for \hat{r}_k and \hat{d}.

linear regression
CLASSIC VECTOR FITTING

Starting poles q_k → Identify residues of denominator → Calculate relocated poles → Identify residues \overline{R}_k

\[
\overline{F}(s) = \frac{\overline{p}(s)}{\sigma(s)} = \frac{\sum_{k=1}^{K} \frac{\overline{r}_k}{s - q_k} + \overline{d} + s \overline{e}}{\sum_{k=1}^{K} \frac{\hat{r}_k}{s - q_k} + \hat{d}}
\]

Zeros of $\sigma(s)$ = poles of $\overline{F}(s)$.

(nonlinear) eigenvalue problem

\rightarrow relocated poles a_k
CLASSIC VECTOR FITTING

Starting poles q_k → Identify residues of denominator → Calculate relocated poles → Identify residues R_k

\[\overline{F}(s) = \sum_{k=1}^{K} \frac{\overline{R_k}}{s - \overline{a_k}} + \overline{D} + s\overline{E} \]

Identify $\overline{R_k}$, \overline{D} and \overline{E}.

linear regression
CLASSIC VECTOR FITTING

Starting poles \(q_k \)

Identify residues of denominator

Calculate relocated poles

Identify residues \(R_k \)

linear regression

eigenvalue problem

linear regression
Linear Bayesian Vector Fitting

1. Starting poles q_k
2. Identify residues of denominator
 - Bayesian linear regression
3. Calculate relocated poles
4. Identify residues R_k
5. Bayesian linear regression sampling
LINEAR BAYESIAN VECTOR FITTING

\[q_k \rightarrow \hat{r}_k, \hat{d} \rightarrow a_k \rightarrow \bar{R}_k \rightarrow \text{LBVF model} \]

Sampling denominator residues
Calculating relocated poles
LINEAR BAYESIAN VECTOR FITTING

$q_k \rightarrow \hat{r}_k, \hat{d} \rightarrow a_k \rightarrow R_k \rightarrow \text{LBVF model}

\text{Sampling residues}
LINEAR BAYESIAN VECTOR FITTING

LBVF models
AFS with Linear Bayesian Vector Fitting

Initial frequency points → sample LBVF models → Calculate weighted uncertainty

Evaluate new frequency point

>threshold? yes → final rational model

no → >threshold?
AFS with Linear Bayesian Vector Fitting

- Initial frequency points
- Sample LBVF models
- Evaluate new frequency point
- Calculate weighted uncertainty
- > threshold?
- Final rational model

- Samples from LBVF models of different orders
- Weighted standard deviation using marginal likelihood as weights
- Gaussian penalties at already evaluated points
Example
HAIRPIN FILTER

\(S_{11}\) (dB)	Simulated data		
12.5	13.0	13.5	14.0	14.5
100	80	60	40	20

\(S_{21}\) (dB)	Simulated data		
12.5	13.0	13.5	14.0	14.5
16	30	15	8	5
HAI R P I N F I L T E R

4 INITIAL POINTS

\[S_{11} \]

\[S_{21} \]

\(|S_{11}| \) (dB)

\(|S_{21}| \) (dB)
HAIRPIN FILTER

4 INITIAL POINTS

\[S_{11} \]

\[S_{21} \]

-60 -50 -40 -30 -20 -10 0 10

12.5 13.0 13.5 14.0 14.5

Frequency (GHz)

\(|S_{11}| \) (dB)

\(|S_{21}| \) (dB)

1 pole samples
2 pole samples
3 pole samples
known points
HAIRPIN FILTER
4 INITIAL POINTS

S_{11}

S_{21}
HAIRPIN FILTER
5 POINTS

S_{11}

S_{21}
Hairpin Filter

5 Points

S_{11}

S_{21}
HAIRPIN FILTER

5 POINTS

S_{11}

S_{21}
HAIRPIN FILTER

6 POINTS

\[S_{11} \]

\[S_{21} \]

Uncertainty

<table>
<thead>
<tr>
<th>(S_{11}) (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 pole samples</td>
</tr>
<tr>
<td>3 pole samples</td>
</tr>
<tr>
<td>4 pole samples</td>
</tr>
<tr>
<td>5 pole samples</td>
</tr>
<tr>
<td>known points</td>
</tr>
<tr>
<td>Next point</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(S_{21}) (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 pole samples</td>
</tr>
<tr>
<td>3 pole samples</td>
</tr>
<tr>
<td>4 pole samples</td>
</tr>
<tr>
<td>5 pole samples</td>
</tr>
<tr>
<td>known points</td>
</tr>
<tr>
<td>Next point</td>
</tr>
</tbody>
</table>
HAIRPIN FILTER
7 POINTS

S_{11}

S_{21}
HAIRPIN FILTER

8 POINTS

S_{11}

S_{21}
HAIRPIN FILTER

9 POINTS

\[S_{11} \]

\[S_{21} \]
HAIRPIN FILTER
10 POINTS

S_{11}

S_{21}
HAIRPIN FILTER

11 POINTS

![Graphs of S11 and S21](image)

- Frequency (GHz)
- |S11| (dB)
- |S21| (dB)
- 7 pole samples
- 8 pole samples
- 9 pole samples
- 10 pole samples
- Known points
- Next point

Uncertainty: 1×10^{-2}
HAIRPIN FILTER

BEST MEAN FIT AT EACH STEP

S\textsubscript{11}

- best mean fit
- known points

S\textsubscript{21}

- best mean fit
- known points
HARPin FILTER

FINAL MEAN FIT

![Graphs showing |S11| and |S21| for different frequencies. The graphs display the simulated data, best fit, and evaluated points.]
SUMMARY

- LBVF is a next-generation stochastic modeling framework based on Vector Fitting.

- It provides a useful measure of model uncertainty.

- Key advantages:
 - provides model uncertainty in a principled and statistically sound manner
 - can handle noisy (non-deterministic) data
A BAYESIAN APPROACH TO ADAPTIVE FREQUENCY SAMPLING

Simon De Ridder — simon.deridder@ugent.be
HAIRPIN FILTER
UNCERTAINTY QUANTIFICATION WITH GAUSSIAN NOISE

- Relocated poles
- Relocated pole

\[
\frac{(3 - 85.0307) \times 10^{-10}}{(\Re + 0.346671) \times 10^{-10}}
\]
HAIRPIN FILTER

UNCERTAINTY QUANTIFICATION WITH GAUSSIAN NOISE

![Graphs showing S11 magnitude and phase vs. frequency with Gaussian noise uncertainty.]
DOUBLE SEMI-CIRCULAR PATCH ANTENNA

1590 µm $\varepsilon_r = 2.62$

1590 µm $\varepsilon_r = 2.62$
DOUBLE SEMI-CIRCULAR PATCH ANTENNA

AFS
DOUBLE SEMI-CIRCULAR PATCH ANTENNA
AFS
DOUBLE SEMI-CIRCULAR PATCH ANTENNA
AFS

![Graph showing frequency response with uncertainty]
DOUBLE SEMI-CIRCULAR PATCH ANTENNA AFS

Graph:
- **Uncertainty:** 1e-3
- **Magnitude (dB):**
 - 4 pole samples
 - 5 pole samples
 - 6 pole samples
 - Known points
 - Next point

Frequency (GHz):
- 2.0
- 2.5
- 3.0
- 3.5
- 4.0

Magnitude (dB):
- 0
- -20
- -40
- -60
DOUBLE SEMI-CIRCULAR PATCH ANTENNA

AFS

![Graph of double semi-circular patch antenna characteristics](image-url)

The graph above illustrates the performance of a double semi-circular patch antenna (AFS) across different frequencies. The graph shows the magnitude (dB) response at various frequencies ranging from 2.0 GHz to 4.0 GHz.

Key features:
- Five different pole samples are plotted, each represented by a different line color.
- The graph includes known points and a next point marker.
- Uncertainty is indicated by a range around the plotted points.

The figure provides a clear visualization of how the antenna's performance changes with frequency, highlighting its characteristics at various points in its frequency response.
DOUBLE SEMI-CIRCULAR PATCH ANTENNA
AFS
DOUBLE SEMI-CIRCULAR PATCH ANTENNA

AFS

![Graph showing frequency response and uncertainty for a double semi-circular patch antenna. The graph displays the magnitude in dB and uncertainty across different frequencies. The frequency range is from 2.0 to 4.0 GHz, and the magnitude varies from -40 dB to 0 dB. The graph includes markers for known points and the next point, with uncertainty indicated by a 1e-3 scale.]
DOUBLE SEMI-CIRCULAR PATCH ANTENNA

AFS

![Graph showing frequency and magnitude for different pole samples and known points.](image)
DOUBLE SEMI-CIRCULAR PATCH ANTENNA

AFS