A Method to Determine Wide Bandgap (WBG) Power Devices Packaging Interconnections

Loris Pace, Nicolas Defrance, Arnaud Videt, Nadir Idir, Jean-Claude De Jaeger
Laboratory of Electrical Engineering and Power Electronics (L2EP)
Institute of Electronics, Microelectronics and Nanotechnologies (IEMN)
University of Lille, France
High frequency power conversion enables to reduce size and weight of power converters:

$$2\,\text{kHz}$$

$$150\,\text{W/in}^3$$

High power density of WBG devices enables to optimize packagings:

High Johnson FoM of GaN and SiC shows their abilities to operate in high power and high frequency converters:

<table>
<thead>
<tr>
<th>Johnson FoM</th>
<th>Si</th>
<th>SiC</th>
<th>GaN</th>
</tr>
</thead>
<tbody>
<tr>
<td>FoM</td>
<td>1</td>
<td>410</td>
<td>790</td>
</tr>
</tbody>
</table>

$$JFM = \left(\frac{E_c v_{sat}}{2\pi}\right)^2$$

Accurate WBG device models including packaging characteristics are required to better predict high frequency operation of power converters.
Context

Influence of packaging interconnections for a 3-terminals transistor:

Origins of parasitics:
- Bondings
- Vias
- Pins/Pads

\(R_G, R_D \) and \(R_S \):
- Increase conduction power losses
- Slow down switchings
- Damp voltages ringings

\(L_G \) and \(L_D \):
- Gate and Drain overvoltages
- Gate and Drain voltage ringings

\(L_S \):
- Drastically increases turn on and off times
I. Calibration Procedure for S-Parameter Characterization
 1. Characterization Fixtures for the WBG Devices Under Test
 2. Open-Short Calibration
 3. Characteristics of the Calibration Fixtures

II. Access Parasitics Determination of Packaged WBG Devices
 1. SiC Schottky Diode
 2. GaN HEMT with 3-terminals
 3. GaN HEMT with 4-terminals

Conclusion
I. Calibration Procedure for S-Parameter Characterization
 1. Characterization Fixtures for the WBG Devices Under Test
 2. Open-Short Calibration
 3. Characteristics of the Calibration Fixtures

II. Access Parasitics Determination of Packaged WBG Devices
 1. SiC Schottky Diode
 2. GaN HEMT with 3-terminals
 3. GaN HEMT with 4-terminals

Conclusion
I.1. Characterization Fixtures for the WBG DUT

- Transmission lines on PCB:
 - On-board SMA connectors
 - 18 GHz 500 V

- Ground plane

- FR4 Substrate ($\varepsilon \approx 4.6$)

- SiC Schottky Diode
 - IDDD04G65C6XTMA1
 - 650V / 8A

- 1-Port S-parameter characterization for 2-terminals devices:
 - $w = 3 \text{ mm}$
 - $s = 1.5 \text{ mm}$
 - $h = 1.6 \text{ mm}$
 - VNA Port 1
 - S11
 - Cathode Port 1
 - Ground Plane
 - Anode to Ground
I.1. Characterization Fixtures for the WBG DUT

- GaN HEMT with 3 terminals:

- GaN HEMT with additional Kelvin Source:

GaN HEMT
650V / 8A
GS66502B

GaN HEMT
650V / 30A
GS66508B
I.2. Open-Short Calibration

Calibration standards are required in order to get Z parameters of the DUT.

Y_0: Coupling between line and ground plane

Z_1, Z_2, and Z_3: transmission lines impedances

Y_3, Y_4, Y_5, and Y_6: Coupling between transmission lines
I.2. Open-Short Calibration

Simple impedance calculations to get the Z parameter of the SiC Schottky diode

Matrix calculations to get the Z parameter of the GaN HEMT

→

→
I.3. Characteristics of the calibration fixtures

Transmission line parameters:

- $L_{TL} = 5.95 \text{ nH}$
- $C_{TL} = 2.17 \text{ pF}$
- $Z_{C_{TL}} \approx \frac{L_{TL}}{C_{TL}} = 52.4 \Omega$

<table>
<thead>
<tr>
<th>C_4 (fF)</th>
<th>C_5 (fF)</th>
<th>C_6 (fF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.1</td>
<td>3.09</td>
<td>203</td>
</tr>
</tbody>
</table>
I. Calibration Procedure for S-Parameter Characterization
 1. Characterization Fixtures for the WBG Devices Under Test
 2. Open-Short Calibration
 3. Characteristics of the Calibration Fixtures

II. Access Parasitics Determination of Packaged WBG Devices
 1. SiC Schottky Diode
 2. GaN HEMT with 3-terminals
 3. GaN HEMT with 4-terminals

Conclusion
I. Calibration Procedure for S-Parameter Characterization
 1. Characterization Fixtures for the WBG Devices Under Test
 2. Open-Short Calibration
 3. Characteristics of the Calibration Fixtures

II. Access Parasitics Determination of Packaged WBG Devices
 1. SiC Schottky Diode
 2. GaN HEMT with 3-terminals
 3. GaN HEMT with 4-terminals

Conclusion
II.1. SiC Schottky Diode

Equivalent circuit in off-state and reverse bias:

\[V_{AK} \]

Biasing system:

Bias Tee

Limit
II.1. SiC Schottky Diode

- Diode capacitance is characterized with this method up to 200 V
- Good accuracy for the capacitance extraction

Extracted parameters without bias:

<table>
<thead>
<tr>
<th>R_d (mΩ)</th>
<th>L_d (nH)</th>
<th>C_d (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>442</td>
<td>7.4</td>
<td>237</td>
</tr>
</tbody>
</table>
II.2. 3-Terminals WBG Power Devices

Equivalent circuit in off-state
\((V_{GS} = 0V, V_{DS} = 0V) \):
\[
\begin{align*}
R_G & \quad L_G \quad C_g \quad C_d \quad L_D \quad R_D \\
C_s & \quad L_s \quad R_s
\end{align*}
\]

Inductances extraction:
\[
\begin{align*}
\text{Im}(Z_{11} - Z_{12})\omega &= L_G \omega^2 - \frac{1}{C_g} \\
\text{Im}(Z_{22} - Z_{12})\omega &= L_D \omega^2 - \frac{1}{C_d} \\
\text{Im}(Z_{12})\omega &= L_S \omega^2 - \frac{1}{C_s}
\end{align*}
\]

Equivalent circuit in Cold FET
\((V_{GS} > V_{TH}, V_{DS} = 0V) \):
\[
\begin{align*}
\text{Im}(Z_{11} - Z_{12})\omega &\approx L_G \omega^2 - \frac{1}{C_g} \\
\text{Im}(Z_{22} - Z_{12})\omega &= L_D \omega^2 \\
\text{Im}(Z_{12})\omega &= L_S \omega^2
\end{align*}
\]
II.2. 3-Terminals WBG Power Devices

- Characterization of a SiC MOSFET in TO-247 package:

\[
\begin{array}{ccc}
L_G (\text{nH}) & L_D (\text{nH}) & L_S (\text{nH}) \\
6.96 & 0.61 & 5.82 \\
\end{array}
\]

- Characterization of the GaN HEMT G66502B:

\[
\begin{array}{ccc}
L_G (\text{nH}) & L_D (\text{nH}) & L_S (\text{nH}) \\
0.56 & 1.88 & 0.94 \\
\end{array}
\]
II.3. 3-Terminals WBG Power Devices

Access resistances extraction with the Cold FET technique:

\[
\text{Re}(Z_{11} - Z_{12}) = R_G + \frac{G_g}{G_g^2 + C_g^2 \omega^2}
\]

\[
R_G = 716 \text{ m}\Omega \rightarrow
\]

\[
\text{Re}(Z_{22}) = R_D + R_S + \frac{1}{K_1(V_{GS} - V_{TH})}
\]

\[
R_D + R_S = 172 \text{ m}\Omega \rightarrow
\]

\[
\text{Re}(Z_{12}) = R_S + \frac{1}{K_1(V_{GS} - V_{TH})}
\]

\[
R_S = 14 \text{ m}\Omega \rightarrow
\]

Extracted values:

<table>
<thead>
<tr>
<th>Component</th>
<th>Value (\text{m}\Omega)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_G)</td>
<td>716</td>
</tr>
<tr>
<td>(R_D)</td>
<td>158</td>
</tr>
<tr>
<td>(R_S)</td>
<td>14</td>
</tr>
<tr>
<td>Off-State</td>
<td>557</td>
</tr>
<tr>
<td>Cold FET</td>
<td>716</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>2300</td>
</tr>
</tbody>
</table>

\(L_G\), \(G_g\), \(R_G\), \(C_g\), \(R_D\), \(L_D\), \(\alpha R_{ch}\), \(R_S\), \(L_S\), \(K_1\), \(V_{GS}\), \(V_{TH}\)
Proposed characterization method:

- Resistances: Cold FET 2-Port S-parameter measurement between G-D-PS

- Inductances:
 - 2-Port S-parameter measurement at $V_{GS} = 6V$ between G-D-PS
 - 2-Port S-parameter measurement at $V_{GS} = 6V$ between G-D-KS
 - 1-Port S-parameter measurement at $V_{GS} = 0V$ between KS-PS
II.3. 4-Terminals GaN HEMT

\[R_D + R_S \rightarrow R_S \rightarrow R_G \rightarrow \]

- \(R_D \) (mΩ)
- \(R_S \) (mΩ)
- \(R_G \) (mΩ)

- \(L_G \) (nH)
- \(L_D \) (nH)
- \(L_{CS} \) (nH)
- \(L_{PS} \) (nH)
- \(L_{KS} \) (nH)

<table>
<thead>
<tr>
<th>(R_G)</th>
<th>(R_D)</th>
<th>(R_S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>560</td>
<td>42.4</td>
<td>6.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(L_G)</th>
<th>(L_D)</th>
<th>(L_{CS})</th>
<th>(L_{PS})</th>
<th>(L_{KS})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>1.3</td>
<td>0.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Conclusion of the talk:

- Test fixtures and adapted calibration technique for wideband characterization
- Better accuracy of Cold FET than Off-State measurements for devices prasistics extraction
- Innovative method to characterize packaged transistors including Kelvin Source

Future work:

- Improvement on the short calibration to separate packaging from PCB connections parasitic effects
- Use of ADS software for advanced validation of the characterization method
Thank you for your attention